Geometry of a Family of Cubic Polynomials

C. FRAYER AND J. WALLACE

Abstract - Let P, be the family of complex-valued polynomials of the form p(z) = (z —
a)(z —r1)(z —r2) with @ € [0,1] and |r1| = |r2| = 1. The Gauss-Lucas Theorem implies
that the critical points of a polynomial in P, lie in the unit disk. This paper characterizes
the location and structure of these critical points. We show that the unit disk contains a
‘desert’ region, the open disk {z € C: |z — %a| = %}, in which critical points of polynomials
in P, do not occur. Furthermore, almost every c inside the unit disk and outside of the
desert region is the critical point of a unique polynomial in P,.
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1 Introduction

The Gauss-Lucas Theorem implies that the critical points of a complex-valued polynomial
lie in the convex hull of its roots [4]. Several recent papers [1], [2], [3], [5] have explored the
geometry of complex-valued polynomials with three roots. Critical points of polynomials
of the form p(z) = (2 — 1)(z — r1)(z — o) with || = |2 = 1 are investigated in [I]. For
such a polynomial, the Gauss-Lucas Theorem guarantees that its critical points lie in the
unit disk. In this case, there is more to say. It is shown in [I] that no critical point occurs
in the ‘desert’ region {z eC: |z— §| < %}, and a critical point of such a polynomial
almost always determines the polynomial uniquely. Furthermore, an underlying structure
relates the critical points of such a polynomial. If one critical point lies on the circle
C={z€C:|z— 3| <3}, then the other critical point lies on C. Otherwise the critical
points lie on opposite sides of C'.

For a € [0, 1], a natural generalization of [I] is to investigate the family of polynomials

Fo={p:C—=C|p(z) = (z —a)(z —n)(z = r2),[r| = [r2| = 1,a € [0,1]}.

Critical points of polynomials in Py are characterized in [3]. Similar to [I], the unit
disk contains a desert, {z eC: |zl < %}, in which critical points do not occur, and a
critical point almost always determines a polynomial uniquely. This paper completes the
generalization by investigating critical points of polynomials in P, for a € (0,1). We used
GeoGebra to visualize the critical points of polynomials in P,. In Figure [I, we set r; and
ro in motion around the unit circle and traced the trajectories of the critical points in
grey. Similar to [I] and [3], the unit disk contains a desert region in which critical points
do not occur, and almost every c inside the unit disk and outside the desert region is the
critical point of a unique polynomial in P, (see our Theorem .
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Figure 1: Setting r; and 75 in motion around the unit circle and tracing the trajectories
of the critical points in grey allows us to visualize the desert region.

2 Critical Points

We begin by introducing some notation. For a € [0, 1], define the circle A, = {z € C :
|z — (1 —b)a| = b, b > 0}. When necessary, we express the a dependence of A, as Af.
Observe that A; is the unit circle and Ay = {a}. Furthermore, for a € [0,1), a given z in
the unit disk lies on a unique A, with b > 0. When a = 1, all the circles A} contain the
point z = 1. In this case, each z # 1 in the unit disk lies on a unique A} with b > 0.

A polynomial of the form p(z) = (2 — a)(z — r1)(z — r2) has two critical points. To
characterize these critical points, we investigate how they are related to their associated
roots. If ¢ is a critical point of p(z), then

0=7p(c) =3¢ —2(a+r, +ry)c+riry +ary + ary
and it follows that
0 =ryr; — (2¢ — a)] — [(2c — a)r; — (3¢® — 2ac)]. (1)
If ry # 2¢ — a, becomes

(2¢ — a)r; — (3¢* — 2ac)
rn — (2¢ — a)

T9 =

and when r; = 2¢ — a, implies ¢ = a.
Definition 2.1 Given ¢ # a, we define

(2c — a)z — (3¢ — 2ac)

fole) = S S (3)

and S, = f.(A41).
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Observe that f. is a linear fractional transformation with f.(r;) = ro. Furthermore,
for ¢ # a, direct calculation shows (f.)™' = f.. Therefore, f.(r;) = r; and we have
established the following result.

Theorem 2.2 A polynomial p(z) = (z —a)(z —11)(2 — 12) has a critical point at ¢ if and
only if fe(r1) = r2.

To gain intuition, we recall Gauss’s physical interpretation relating roots and critical
points of a polynomial [4]. The critical points of a polynomial are the equilibrium points
of a force field. The field is generated by particles placed at the roots of the polynomial,
the particles having masses equal to the multiplicity of the roots and attracting with a
force inversely proportional to the distance from the particle. With this in mind, when
a critical point of a polynomial in P, occurs at a repeated root on the unit circle, the
second critical point is forced to be as close as possible to the root at z = a, and hence
lie on the boundary of the desert region.

Figure 2: The polynomial p(z) = (z — a)(z — ¢)*> € P, has critical points ¢ € A; and
ca € Ay/3. Observe that ¢, is in the convex hull of {c, a}.

Example 2.3 Suppose p € P, has a critical point ¢ € A;. The Gauss-Lucas Theorem
implies that ¢ is a repeated root of p. Therefore, p(z) = (z — a)(z — ¢)? is the only
polynomial in P, with a critical point at ¢ € A;. Furthermore,

P'(2)=(2—¢)(3z2 — (2a +¢))

so the other critical point of p(z) satisfies 3co — (2a + ¢) = 0. Therefore, as 3¢y — 2a = ¢
implies ‘02 — % = %, it follows that c; € A;y/3. See Figure .

This example provides us with a conjecture. We hypothesize that no polynomial in P,
will have a critical point strictly inside A;/3 (See Theorem [4.1]) Proving this hypothesis
requires a better understanding of S..
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Figure 3: If c is a critical point of p(z) = (z—a)(z—7r1)(2—12) € P,, then {r1,m2} C S.NA;.

To further explore S., recall that {ry,rs} C Ay, fo(r1) = 12, fe(rs) = ri, and S, =
fe(Aq). These facts imply {ry,r2} € S.N Ay. That is, if ¢ is a critical point of p(z) =
(z—a)(z—r1)(z—12) € Py, then {r1,r2} C ScNA;. See Figure[3| Lemma [2.4]investigates
the cardinality of S. N A; and is the direct extension of a result in |3, Lemma 4].

Lemma 2.4 Suppose ¢ # a. The circles S. and Ay coincide, are disjoint, or intersect in
one or two distinct points.

1. If S.N Ay = &, then no polynomial in P, has a critical point at c.

2. If S. = Ay, then for each r € Ay there is a unique polynomial (z — a)(z — 1)(z —
fe(r)) € P, with a root at r and a critical point at c.

3. Otherwise, S. N Ay = {r, f.(r)} consists of two points, or one point if f.(r)=r. In
this case, (z — a)(z — r)(z — f.(r)) is the unique polynomial in P, with a critical
point at c.

3 Properties of S,

Suppose ¢ # a. As ,
~ (2c—a)z — (3¢® — 2ac)
felz) = z—(2c—a)

is a linear fractional transformation and A; is a circle, S. will be a circle or a line.
Furthermore, S, will be a line whenever there exists a z € A; with z — (2¢ —a) = 0. As
|z| =1, this occurs when £ = |c — £|. Therefore, S, is a line if and only if ¢ € A ».

To determine when S. = A;, we need an additional fact related to linear fractional
transformations.
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Theorem 3.1 [2] A linear fractional transformation T sends the unit circle to the unit
circle if and only if

Ch =

for some o, 8 € C with ’%‘ #1.

Example 3.2 When a = 0, it is shown in [3] that S. = A, if and only if |¢| = /1/3 and
when a = 1, it is shown in [1] that S, = A, if and only if ¢ = —3.
Suppose a € (0,1). Applying Theorem [3.1] to (3)) implies S. = A; whenever

% —a=2c—a and 3¢ —2ac=1.

The left equality implies ¢ is real, and for a real-valued ¢ the right equation gives ¢ =
4 ¢ YoiS ¢ R, That s, if ¢ = & & Y253 then S, = A;.
Conversely, if S, = A, then Theorem implies

_ (@2c—a)z— (3¢ —2ac) wz—f
fel2) = z— (2c—a) C fz—a’

In this case, there exists a nonzero complex number v such that

v((2c — a)z — (3¢ — 2ac)) =az — f and v(z — (2¢ —a)) = Bz — .

Therefore, B
v(2c —a) =a=v(2c—a) and v(3c* —2ac) =B =70
S0
%2 —
3¢2 — 2ac = ——2. (4)
c—a

Setting ¢ = = + iy in and equating real and imaginary parts gives

27 —a = (2r — a)(32* — 3y* — 2ax) + 4y*(3z — a) (5)
and

2y =2y [(2z — a)(3z — a) — (32® — 3y® — 2ax)] . (6)
If y #0, @ implies

» 1 —32°+3ax —a®

Y 3 : (7)

242
Substituting into eventually gives 0 = a(a? +2 — 3az) so z = @

into implies

. Substituting

o a'—5d®+4

Yy = T7

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 2 (2019), 95-106 99



a contradiction. It follows that y = 0. In this case we have that ¢ = x and from we get
0= (22 — a)(32% — 2az — 1).

If 2z —a = 0, then ¢ = 5. In this case we have f.(z) = % = g so that 1 = |f.(1)| =
a2

-, a contradiction. Therefore 32? — 2ax — 1 =0 and

3
C:ngia—”_
3 3

To summarize, S, = A; if and only if ¢ = ¢ & —V“;”L?’

For ¢ ¢ Ay/s, S. is a circle. By the definition of S,, z € S, if and only if there exists
some w € A; with f.(w) = z. Equivalently, f.(z) = w implies |f.(z)| = 1, so that

(2c — a)z — (3¢ — 2ac) 1
z—(2c—a) -
Thus, z € S, if and only if
3c¢* — 2ac
—(2¢c—a)| = |2¢c — S 8
22— a) = 2 —af - - 252 )

For k # 1, an introductory complex analysis result [6] states that the solution set of
|z — u| = k|z — v| is a circle with center C' and radius R satisfying
k*v —u

k? —1

C= and R = |v — u|

k2 —1]|

H
When k£ = |2c—al =1in , c € Ao and S, is a line. This leads to the following lemma.

Lemma 3.3 Suppose ¢ ¢ Ayjo. Then S, is a circle with center vy and radius r given by

(2¢ — a)(3¢* — 2ac) — (2¢ — a)
|2¢ —al2 —1

3c¢? — 2ac

2c—a

andr =

’y:

|2¢ — al '

<2C_&)H|20—a|2—1 '

For future use, we illustrate Lemma [3.3| with an example.

Example 3.4 For ¢ = %a, the center and radius of S, are

3a 4 a?
= and r = .
TT 9 9 — a?
As |y +r| = 3;_722 = !ﬁ‘ < 1, S, is contained inside A;. Therefore, by Lemma no

polynomial in P, has a critical point at ¢ = %a.
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According to Lemma [2.4], if S, is tangent to A; at 7, then ¢ is the critical point of the
unique polynomial
p(2) = (z —a)(z —7)* € P,
Furthermore, as seen in Example 7 the critical points of p are r € A; and % € Ayys.

That is, if S, is tangent to Ay, then ¢ € A; U A;/3. Example [3.5]investigates the converse
of this statement.

Example 3.5 Suppose ¢ € A;. Then ¢ = ¢ and by Lemma the center of S, is

(2e7% — a)(3e* — 2ae?) — (2 — a)
(2e=% —a)(2e? —a) — 1
—3ae*® + (4 + 2a?)e? — 3a
3+ a? — 2ae~ — 2ae"
—3ae” — 3ae™" + 4 + 24>
3+ a? — 4acos(0)
4+ 2a* —6acos(f)
34 a2 —4acos(h) ¢

,7:

Additionally, for a € (0,1), one can verify that %m > 1. Since ¢ € A; and

fe(c) = ¢ € S., cis a point of intersection of S. and A; that lies on the line connecting
their centers. Therefore, S. is externally tangent to A; at c.

Similar calculations show that if ¢ € A; /3, then S, is internally tangent to A; at 3c—2a.
See Figure [4

Figure 4: Circles S, and S, for ¢; € A3 and ¢ = 3¢; — 2a € A;.

We have established the following result.

Lemma 3.6 Suppose c € C.
1. S. is internally tangent to Ay if and only if c € Ay3.
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2. S, is externally tangent to Ay if and only if c € Ay

For ¢ € Ay/3U Ay, S, is tangent to Ay and it follows that |S. N A;| = 1. Lemmas
and [3.8| determine |S. N A;| when ¢ ¢ A3 U A;.

Lemma 3.7 Ifc € A, with b € (%, 1) and ¢ # “EVeE3 ”§2+3, then |S. N Ay| = 2.

Proof. Let c € A, with b € (%, 1) and ¢ # %‘/‘m Without loss of generality, suppose
to the contrary that |[S. N A;| = 0 and S, is contained inside A;. As we drag ¢ to A;
along a line segment avoiding A, /3, S, is continuously transformed into a circle externally
tangent to A;. By the Intermediate Value Theorem, there exists a ¢y on the line segment
with S, internally tangent to A;. However, as ¢ does not cross A; 3, this contradicts
Lemma and it follows that |S. N A;| = 2. O

A similar ‘dragging’ argument shows that S. N A; = () whenever c¢ is contained inside
Ayys.

Lemma 3.8 If ¢ is contained inside A3, then ScN Ay = 0.

Proof. Suppose to the contrary that c¢ is contained inside A;/3 with |S. N A;| = 2. As
we drag ¢ to %a, the center of A3, along a line segment, it follows from Example
that S, is continuously transformed into a circle contained inside A;. By the Intermediate
Value Theorem, there must exist a ¢y on the line segment with S,, internally tangent to
A;. However, as c¢ does not cross A3, this contradicts Lemma and it follows that
S.NA =0. O

4 Main Result

We are now ready to characterize the critical points of polynomials in P,.

Theorem 4.1 Let c € C.
1. If c € Ay with b € [0,3) U (1,00), then no polynomial in P, has a critical point at c.

2. If c € Ay with b € [%, 1] and ¢ # EY+3 V3“2+3, then c is the critical point of exactly one
polynomial in P,.

3. If ¢ = Vi3 ”;2”, then infinitely many polynomaials in P, have a critical point at c.

Proof. Let c € C.
1. If ¢ € A, with b € [0, 3), then Lemmas and imply that no polynomial in
P, has a critical point at ¢. Furthermore, if ¢ € A, with b > 1, the Gauss-Lucas
Theorem implies that no polynomial in P, has a critical point outside of the unit

disk.
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2. Ifc€ Ay with b € [3,1] and ¢ # “EYEE then Example and Lemmas and
imply |S. N A;] € {1,2}. Therefore, by Lemma[2.4] ¢ is the critical point of exactly
one polynomial in P,.

3. If ¢ = aEvads V3“Q+3, then Example implies S, = A; and by Lemma |2.4

p(z) = (z —a)(z —7r)(z = fe(r)) € P4
has a critical point at ¢ for each r € A;.

O

This completes the characterization of critical points of polynomials in P,. The unit

disk contains a single desert region, {z € A, : b € [0,3)}, in which critical points do not

occur, and almost every c inside the unit disk and outside the desert region is the critical
point of a unique polynomial in P,.

5 Structure of Critical Points

Having determined where the critical points of a polynomial in P, are located, we now
investigate how they are related to each other. This relationship involves inversion over a
circle. Recall that if C'is a circle centered at O with radius r and X is a point distinct from

O, then the inversion of X over C'is the point Y on the ray @? such that |OX|-|0Y| = r2.
For motivation, we revisit the results of [I]. Polynomials of the form

p(z) = (z = D(z = 11)(z = 12)

with |rq| = |re| = 1 have two critical points. If one critical point, ¢1, lies on the circle A} /2o
then the other critical point, ¢, also lies on Aj /2 with ¢ = ¢7. Otherwise, the critical
points lie on opposite sides of A} J2- In this case, A}, the unit circle, is the inversion of
Al /3, the boundary of the desert region, across Al P

For a = 0, [3] establishes similar results with A° 7 being the circle of inversion. As

this structure is present for the extreme values of « = 0 and a = 1, one might expect
similar results for a € (0,1).

Definition 5.1 For a € [0, 1], we define Cr to be the circle

( a)2+2 1 a
T — = =-——.
5 Yy

Observe that when a = 1, we have Ai/2 = (7, and when a = 0, we have A[1/1/_3 = (C].

However, when a ¢ {0,1}, C is not an A, circle. We claim that A; is the inversion of
Ay 3 across Cf.

Lemma 5.2 The circles A; and A3 are inversions with respect to Cf.
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Proof. Since A;, Ay/3, and Cf are symmetric across the real axis, it suffices to show
that the two pairs of real numbers —a + € A1/3 and 1 € Ay, and %a — % € Ay and
—1 € A; are inversions across C7. Settlng X —a — 1 , Y = —1 and denoting the center

and radius of C; as O = (%,0) and 7 = 4/ g — % gives
a 2
(-3
1 a

G363
1

5

r2

0X]-10Y| =

a
a 1‘
2—|—

(12

12

It follows that %a — % € Ay and —1 € A; are inversions across Cy. Similar calculations
verify the claim for the other set of points. Therefore, the circles A; and A, /3 are inversions
with respect to Cf. U

We are now ready to describe the structure relating critical points of polynomials in
P,.

Figure 5: The circles A; and A; /3 are inversions with respect to C7.

Theorem 5.3 Let ¢y and ¢y be the critical points of p € P,. Ifc; € Cy, then co =¢1 € Cf.
Otherwise, ¢ and co lie on opposite sides of Cf.

Proof. Let p € P, have critical points ¢; and cs.
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Suppose ¢; =z + iy € Cf. For cos(f) = 252
pr(z)=(z—a)(z—r)(z—T) € P,,
we will verify that c; is a critical point of p,. Direct calculations give

pr(2) =32 —2(a+r+7)z+ 17+ ar +aF
=32 — 2(a + 2cos(0))z + 1 + 2a cos(f)
= 32> — 612 + 1 + 3ax — a”.

Asc € Cf, 161 = ax + % — %a2 and it follows that
pe(2) =322 = 3(ci + &)z + 311 = 3(2 — 1) (2 — &@).

Therefore, p, has critical points at ¢; and ¢ € C;. By uniqueness, p,(z) = p(z), and if
c1 € Cp, then ¢ =¢ € (.

Suppose ¢; ¢ Cr. We use a dragging argument to show that ¢; and ¢y lie on opposite
sides of C';. Without loss of generality, suppose to the contrary that ¢; and ¢y lie strictly
inside C7. As we drag c¢; along a line segment, contained strictly inside C7, to a point on
Ay /3, Example and the uniqueness from Theorem implies that ¢, travels along a
continuous path to A;. By the Intermediate Value Theorem, c; must cross C; at some
point cy4,. By the first part of this theorem, ¢3,, = c14, € C; which contradicts the fact
that c; is strictly inside C;. Therefore, ¢; and ¢ lie on opposite sides of Cf.

O

As an interesting observation, we note that for r = €¥, p.(2) = (2 —a)(z —7)(2 — T)
will not always have critical points on C;. As r moves around the unit circle, there are
threshold values of # where the critical points move from C} to the real axis. For

a:l:\/12—3a2)

0+ = arccos ( 1

the set of points {a, €+, e~®+} and {a, ¢?-, ¢~} form equilateral triangles. With
this observation in mind, direct calculations give: If 6 € [#_,0.], then p,(z) has critical
points on Cp; If 6 € (0,0_) U (6, 7), then p.(z) has real-valued critical points not on Cj.

This completes the characterization of critical points of polynomials in P,. Our results
can be extended to polynomials of the form

p(z) = (z = a)f(z = )" (2 = 12)"

with |r;| = |re] = 1 and {k,m,n} C N with m = n. Similar to P,, the unit disk

contains a desert region bounded by A2 E_ and a critical point almost always determines a
m+

polynomial uniquely. However, many open questions remain. For example, what happens
when m # n?
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