Geometry of a Family of Cubic Polynomials

C. FRAYER AND J. WALLACE

Abstract - Let P_a be the family of complex-valued polynomials of the form $p(z) = (z - a)(z - r_1)(z - r_2)$ with $a \in [0, 1]$ and $|r_1| = |r_2| = 1$. The Gauss-Lucas Theorem implies that the critical points of a polynomial in P_a lie in the unit disk. This paper characterizes the location and structure of these critical points. We show that the unit disk contains a 'desert' region, the open disk $\{z \in \mathbb{C} : |z - \frac{2}{3}a| = \frac{1}{3}\}$, in which critical points of polynomials in P_a do not occur. Furthermore, almost every c inside the unit disk and outside of the desert region is the critical point of a unique polynomial in P_a .

Keywords : geometry of polynomials; critical points; Gauss-Lucas Theorem **Mathematics Subject Classification** (2010) : 30C15

1 Introduction

The Gauss-Lucas Theorem implies that the critical points of a complex-valued polynomial lie in the convex hull of its roots [4]. Several recent papers [1], [2], [3], [5] have explored the geometry of complex-valued polynomials with three roots. Critical points of polynomials of the form $p(z) = (z - 1)(z - r_1)(z - r_2)$ with $|r_1| = |r_2| = 1$ are investigated in [1]. For such a polynomial, the Gauss-Lucas Theorem guarantees that its critical points lie in the unit disk. In this case, there is more to say. It is shown in [1] that no critical point occurs in the 'desert' region $\{z \in \mathbb{C} : |z - \frac{2}{3}| < \frac{1}{3}\}$, and a critical point of such a polynomial almost always determines the polynomial uniquely. Furthermore, an underlying structure relates the critical points of such a polynomial. If one critical point lies on the circle $C = \{z \in \mathbb{C} : |z - \frac{1}{2}| < \frac{1}{2}\}$, then the other critical point lies on C. Otherwise the critical points lie on opposite sides of C.

For $a \in [0, 1]$, a natural generalization of [1] is to investigate the family of polynomials

$$P_a = \{ p : \mathbb{C} \to \mathbb{C} \mid p(z) = (z - a)(z - r_1)(z - r_2), |r_1| = |r_2| = 1, a \in [0, 1] \}.$$

Critical points of polynomials in P_0 are characterized in [3]. Similar to [1], the unit disk contains a desert, $\{z \in \mathbb{C} : |z| < \frac{1}{3}\}$, in which critical points do not occur, and a critical point almost always determines a polynomial uniquely. This paper completes the generalization by investigating critical points of polynomials in P_a for $a \in (0, 1)$. We used GeoGebra to visualize the critical points of polynomials in P_a . In Figure 1, we set r_1 and r_2 in motion around the unit circle and traced the trajectories of the critical points in grey. Similar to [1] and [3], the unit disk contains a desert region in which critical points do not occur, and almost every c inside the unit disk and outside the desert region is the critical point of a unique polynomial in P_a (see our Theorem 4.1).

Figure 1: Setting r_1 and r_2 in motion around the unit circle and tracing the trajectories of the critical points in grey allows us to visualize the desert region.

2 Critical Points

We begin by introducing some notation. For $a \in [0, 1]$, define the circle $A_b = \{z \in \mathbb{C} : |z - (1 - b)a| = b, b \ge 0\}$. When necessary, we express the *a* dependence of A_b as A_b^a . Observe that A_1 is the unit circle and $A_0 = \{a\}$. Furthermore, for $a \in [0, 1)$, a given *z* in the unit disk lies on a unique A_b with $b \ge 0$. When a = 1, all the circles A_b^1 contain the point z = 1. In this case, each $z \ne 1$ in the unit disk lies on a unique A_b with b > 0.

A polynomial of the form $p(z) = (z - a)(z - r_1)(z - r_2)$ has two critical points. To characterize these critical points, we investigate how they are related to their associated roots. If c is a critical point of p(z), then

$$0 = p'(c) = 3c^2 - 2(a + r_1 + r_2)c + r_1r_2 + ar_1 + ar_2$$

and it follows that

$$0 = r_2[r_1 - (2c - a)] - [(2c - a)r_1 - (3c^2 - 2ac)].$$
(1)

If $r_1 \neq 2c - a$, (1) becomes

$$r_2 = \frac{(2c-a)r_1 - (3c^2 - 2ac)}{r_1 - (2c-a)} \tag{2}$$

and when $r_1 = 2c - a$, (1) implies c = a.

Definition 2.1 Given $c \neq a$, we define

$$f_c(z) = \frac{(2c-a)z - (3c^2 - 2ac)}{z - (2c - a)}$$
(3)

and $S_c = f_c(A_1)$.

The pump journal of undergraduate research f 2 (2019), 95–106

96

Observe that f_c is a linear fractional transformation with $f_c(r_1) = r_2$. Furthermore, for $c \neq a$, direct calculation shows $(f_c)^{-1} = f_c$. Therefore, $f_c(r_2) = r_1$ and we have established the following result.

Theorem 2.2 A polynomial $p(z) = (z-a)(z-r_1)(z-r_2)$ has a critical point at c if and only if $f_c(r_1) = r_2$.

To gain intuition, we recall Gauss's physical interpretation relating roots and critical points of a polynomial [4]. The critical points of a polynomial are the equilibrium points of a force field. The field is generated by particles placed at the roots of the polynomial, the particles having masses equal to the multiplicity of the roots and attracting with a force inversely proportional to the distance from the particle. With this in mind, when a critical point of a polynomial in P_a occurs at a repeated root on the unit circle, the second critical point is forced to be as close as possible to the root at z = a, and hence lie on the boundary of the desert region.

Figure 2: The polynomial $p(z) = (z - a)(z - c)^2 \in P_a$ has critical points $c \in A_1$ and $c_2 \in A_{1/3}$. Observe that c_2 is in the convex hull of $\{c, a\}$.

Example 2.3 Suppose $p \in P_a$ has a critical point $c \in A_1$. The Gauss-Lucas Theorem implies that c is a repeated root of p. Therefore, $p(z) = (z - a)(z - c)^2$ is the only polynomial in P_a with a critical point at $c \in A_1$. Furthermore,

$$p'(z) = (z - c)(3z - (2a + c))$$

so the other critical point of p(z) satisfies $3c_2 - (2a + c) = 0$. Therefore, as $3c_2 - 2a = c$ implies $|c_2 - \frac{2}{3}| = \frac{1}{3}$, it follows that $c_2 \in A_{1/3}$. See Figure 2.

This example provides us with a conjecture. We hypothesize that no polynomial in P_a will have a critical point strictly inside $A_{1/3}$ (See Theorem 4.1.) Proving this hypothesis requires a better understanding of S_c .

Figure 3: If c is a critical point of $p(z) = (z-a)(z-r_1)(z-r_2) \in P_a$, then $\{r_1, r_2\} \subseteq S_c \cap A_1$.

To further explore S_c , recall that $\{r_1, r_2\} \subseteq A_1$, $f_c(r_1) = r_2$, $f_c(r_2) = r_1$, and $S_c = f_c(A_1)$. These facts imply $\{r_1, r_2\} \subseteq S_c \cap A_1$. That is, if c is a critical point of $p(z) = (z-a)(z-r_1)(z-r_2) \in P_a$, then $\{r_1, r_2\} \subseteq S_c \cap A_1$. See Figure 3. Lemma 2.4 investigates the cardinality of $S_c \cap A_1$ and is the direct extension of a result in [3, Lemma 4].

Lemma 2.4 Suppose $c \neq a$. The circles S_c and A_1 coincide, are disjoint, or intersect in one or two distinct points.

- 1. If $S_c \cap A_1 = \emptyset$, then no polynomial in P_a has a critical point at c.
- 2. If $S_c = A_1$, then for each $r \in A_1$ there is a unique polynomial $(z a)(z r)(z f_c(r)) \in P_a$ with a root at r and a critical point at c.
- 3. Otherwise, $S_c \cap A_1 = \{r, f_c(r)\}$ consists of two points, or one point if $f_c(r) = r$. In this case, $(z a)(z r)(z f_c(r))$ is the unique polynomial in P_a with a critical point at c.

3 Properties of S_c

Suppose $c \neq a$. As

$$f_c(z) = \frac{(2c-a)z - (3c^2 - 2ac)}{z - (2c - a)}$$

is a linear fractional transformation and A_1 is a circle, S_c will be a circle or a line. Furthermore, S_c will be a line whenever there exists a $z \in A_1$ with z - (2c - a) = 0. As |z| = 1, this occurs when $\frac{1}{2} = |c - \frac{a}{2}|$. Therefore, S_c is a line if and only if $c \in A_{1/2}$.

To determine when $S_c = A_1$, we need an additional fact related to linear fractional transformations.

Theorem 3.1 [2] A linear fractional transformation T sends the unit circle to the unit circle if and only if

$$T(z) = \frac{\overline{\alpha}z - \beta}{\beta z - \alpha}$$

for some $\alpha, \beta \in \mathbb{C}$ with $\left|\frac{\alpha}{\beta}\right| \neq 1$.

Example 3.2 When a = 0, it is shown in [3] that $S_c = A_1$ if and only if $|c| = \sqrt{1/3}$ and when a = 1, it is shown in [1] that $S_c = A_1$ if and only if $c = -\frac{1}{3}$.

Suppose $a \in (0, 1)$. Applying Theorem 3.1 to (3) implies $S_c = A_1$ whenever

$$\overline{2c-a} = 2c-a$$
 and $3c^2 - 2ac = \overline{1}$.

The left equality implies c is real, and for a real-valued c the right equation gives c = $\frac{a}{3} \pm \frac{\sqrt{a^2+3}}{3} \in \mathbb{R}$. That is, if $c = \frac{a}{3} \pm \frac{\sqrt{a^2+3}}{3}$, then $S_c = A_1$. Conversely, if $S_c = A_1$, then Theorem 3.1 implies

$$(2c-a)z - (3c^2 - 2ac) \quad \overline{\alpha}z$$

$$f_c(z) = \frac{(2c-a)z - (3c^2 - 2ac)}{z - (2c - a)} = \frac{\overline{\alpha}z - \overline{\beta}}{\beta z - \alpha}$$

In this case, there exists a nonzero complex number v such that

$$v((2c-a)z - (3c^2 - 2ac)) = \overline{\alpha}z - \overline{\beta}$$
 and $v(z - (2c-a)) = \beta z - \alpha$.

Therefore,

$$v(2c-a) = \overline{\alpha} = \overline{v}(2c-a)$$
 and $v(3c^2 - 2ac) = \overline{\beta} = \overline{v}$

 \mathbf{SO}

$$3c^2 - 2ac = \frac{2c - a}{2c - a}.$$
 (4)

Setting c = x + iy in (4) and equating real and imaginary parts gives

$$2x - a = (2x - a)(3x^2 - 3y^2 - 2ax) + 4y^2(3x - a)$$
(5)

and

$$2y = 2y \left[(2x - a)(3x - a) - (3x^2 - 3y^2 - 2ax) \right].$$
 (6)

If $y \neq 0$, (6) implies

$$y^2 = \frac{1 - 3x^2 + 3ax - a^2}{3}.$$
(7)

Substituting (7) into (5) eventually gives $0 = a(a^2 + 2 - 3ax)$ so $x = \frac{a^2 + 2}{3a}$. Substituting into (7) implies

$$y^2 = -\frac{a^4 - 5a^2 + 4}{9a^2},$$

The pump journal of undergraduate research f 2 (2019), 95–106

a contradiction. It follows that y = 0. In this case we have that c = x and from (5)we get

$$0 = (2x - a)(3x^2 - 2ax - 1).$$

If 2x - a = 0, then $c = \frac{a}{2}$. In this case we have $f_c(z) = \frac{-3c^2 + 2ac}{2} = \frac{a^2}{4z}$ so that $1 = |f_c(1)| = \frac{a^2}{4}$, a contradiction. Therefore $3x^2 - 2ax - 1 = 0$ and

$$c = x = \frac{a}{3} \pm \frac{\sqrt{a^2 + 3}}{3}.$$

To summarize, $S_c = A_1$ if and only if $c = \frac{a}{3} \pm \frac{\sqrt{a^2+3}}{3}$.

For $c \notin A_{1/2}$, S_c is a circle. By the definition of S_c , $z \in S_c$ if and only if there exists some $w \in A_1$ with $f_c(w) = z$. Equivalently, $f_c(z) = w$ implies $|f_c(z)| = 1$, so that

$$\left|\frac{(2c-a)z - (3c^2 - 2ac)}{z - (2c - a)}\right| = 1.$$

Thus, $z \in S_c$ if and only if

$$|z - (2c - a)| = |2c - a| \left| z - \frac{3c^2 - 2ac}{2c - a} \right|.$$
(8)

For $k \neq 1$, an introductory complex analysis result [6] states that the solution set of |z - u| = k|z - v| is a circle with center C and radius R satisfying

$$C = \frac{k^2 v - u}{k^2 - 1}$$
 and $R = |v - u| \left| \frac{k}{k^2 - 1} \right|$.

When k = |2c - a| = 1 in (8), $c \in A_{1/2}$ and S_c is a line. This leads to the following lemma.

Lemma 3.3 Suppose $c \notin A_{1/2}$. Then S_c is a circle with center γ and radius r given by

$$\gamma = \frac{(2\bar{c}-a)(3c^2-2ac) - (2c-a)}{|2c-a|^2 - 1} \text{ and } r = \left|\frac{3c^2-2ac}{2c-a} - (2c-a)\right| \left|\frac{|2c-a|}{|2c-a|^2 - 1}\right|.$$

For future use, we illustrate Lemma 3.3 with an example.

Example 3.4 For $c = \frac{2}{3}a$, the center and radius of S_c are

$$\gamma = \frac{3a}{9-a^2}$$
 and $r = \frac{a^2}{9-a^2}$.

As $|\gamma + r| = \left|\frac{3a+a^2}{9-a^2}\right| = \left|\frac{a}{3-a}\right| < 1$, S_c is contained inside A_1 . Therefore, by Lemma 2.4, no polynomial in P_a has a critical point at $c = \frac{2}{3}a$.

According to Lemma 2.4, if S_c is tangent to A_1 at r, then c is the critical point of the unique polynomial

$$p(z) = (z-a)(z-r)^2 \in P_a$$

Furthermore, as seen in Example 2.3, the critical points of p are $r \in A_1$ and $\frac{r+2a}{3} \in A_{1/3}$. That is, if S_c is tangent to A_1 , then $c \in A_1 \cup A_{1/3}$. Example 3.5 investigates the converse of this statement.

Example 3.5 Suppose $c \in A_1$. Then $c = e^{i\theta}$ and by Lemma 3.3 the center of S_c is

$$\gamma = \frac{(2e^{-i\theta} - a)(3e^{2i\theta} - 2ae^{i\theta}) - (2e^{i\theta} - a)}{(2e^{-i\theta} - a)(2e^{i\theta} - a) - 1}$$
$$= \frac{-3ae^{2i\theta} + (4 + 2a^2)e^{i\theta} - 3a}{3 + a^2 - 2ae^{-i\theta} - 2ae^{i\theta}}$$
$$= \frac{-3ae^{i\theta} - 3ae^{-i\theta} + 4 + 2a^2}{3 + a^2 - 4a\cos(\theta)}e^{i\theta}$$
$$= \frac{4 + 2a^2 - 6a\cos(\theta)}{3 + a^2 - 4a\cos(\theta)}c.$$

Additionally, for $a \in (0,1)$, one can verify that $\frac{4+2a^2-6a\cos(\theta)}{3+a^2-4a\cos(\theta)} > 1$. Since $c \in A_1$ and $f_c(c) = c \in S_c$, c is a point of intersection of S_c and A_1 that lies on the line connecting their centers. Therefore, S_c is externally tangent to A_1 at c.

Similar calculations show that if $c \in A_{1/3}$, then S_c is internally tangent to A_1 at 3c-2a. See Figure 4.

Figure 4: Circles S_{c_1} and S_c for $c_1 \in A_{1/3}$ and $c = 3c_1 - 2a \in A_1$.

We have established the following result.

Lemma 3.6 Suppose $c \in \mathbb{C}$.

1. S_c is internally tangent to A_1 if and only if $c \in A_{1/3}$.

2. S_c is externally tangent to A_1 if and only if $c \in A_1$

For $c \in A_{1/3} \cup A_1$, S_c is tangent to A_1 and it follows that $|S_c \cap A_1| = 1$. Lemmas 3.7 and 3.8 determine $|S_c \cap A_1|$ when $c \notin A_{1/3} \cup A_1$.

Lemma 3.7 If $c \in A_b$ with $b \in (\frac{1}{3}, 1)$ and $c \neq \frac{a \pm \sqrt{a^2 + 3}}{3}$, then $|S_c \cap A_1| = 2$.

Proof. Let $c \in A_b$ with $b \in (\frac{1}{3}, 1)$ and $c \neq \frac{a \pm \sqrt{a^2 + 3}}{3}$. Without loss of generality, suppose to the contrary that $|S_c \cap A_1| = 0$ and S_c is contained inside A_1 . As we drag c to A_1 along a line segment avoiding $A_{1/3}$, S_c is continuously transformed into a circle externally tangent to A_1 . By the Intermediate Value Theorem, there exists a c_0 on the line segment with S_{c_0} internally tangent to A_1 . However, as c does not cross $A_{1/3}$, this contradicts Lemma 3.6 and it follows that $|S_c \cap A_1| = 2$.

A similar 'dragging' argument shows that $S_c \cap A_1 = \emptyset$ whenever c is contained inside $A_{1/3}$.

Lemma 3.8 If c is contained inside $A_{1/3}$, then $S_c \cap A_1 = \emptyset$.

Proof. Suppose to the contrary that c is contained inside $A_{1/3}$ with $|S_c \cap A_1| = 2$. As we drag c to $\frac{2}{3}a$, the center of $A_{1/3}$, along a line segment, it follows from Example 3.4 that S_c is continuously transformed into a circle contained inside A_1 . By the Intermediate Value Theorem, there must exist a c_0 on the line segment with S_{c_0} internally tangent to A_1 . However, as c does not cross $A_{1/3}$, this contradicts Lemma 3.6 and it follows that $S_c \cap A_1 = \emptyset$.

4 Main Result

We are now ready to characterize the critical points of polynomials in P_a .

Theorem 4.1 Let $c \in \mathbb{C}$.

- 1. If $c \in A_b$ with $b \in [0, \frac{1}{3}) \cup (1, \infty)$, then no polynomial in P_a has a critical point at c.
- 2. If $c \in A_b$ with $b \in [\frac{1}{3}, 1]$ and $c \neq \frac{a \pm \sqrt{a^2 + 3}}{3}$, then c is the critical point of exactly one polynomial in P_a .

3. If
$$c = \frac{a \pm \sqrt{a^2 + 3}}{3}$$
, then infinitely many polynomials in P_a have a critical point at c.

Proof. Let $c \in \mathbb{C}$.

1. If $c \in A_b$ with $b \in [0, \frac{1}{3})$, then Lemmas 3.8 and 2.4 imply that no polynomial in P_a has a critical point at c. Furthermore, if $c \in A_b$ with b > 1, the Gauss-Lucas Theorem implies that no polynomial in P_a has a critical point outside of the unit disk.

- 2. If $c \in A_b$ with $b \in [\frac{1}{3}, 1]$ and $c \neq \frac{a \pm \sqrt{a^2 + 3}}{3}$, then Example 3.2 and Lemmas 3.6 and 3.8 imply $|S_c \cap A_1| \in \{1, 2\}$. Therefore, by Lemma 2.4, c is the critical point of exactly one polynomial in P_a .
- 3. If $c = \frac{a \pm \sqrt{a^2 + 3}}{3}$, then Example 3.2 implies $S_c = A_1$ and by Lemma 2.4,

$$p(z) = (z - a)(z - r)(z - f_c(r)) \in P_a$$

has a critical point at c for each $r \in A_1$.

This completes the characterization of critical points of polynomials in P_a . The unit disk contains a single desert region, $\{z \in A_b : b \in [0, \frac{1}{3})\}$, in which critical points do not occur, and almost every c inside the unit disk and outside the desert region is the critical point of a unique polynomial in P_a .

5 Structure of Critical Points

Having determined where the critical points of a polynomial in P_a are located, we now investigate how they are related to each other. This relationship involves inversion over a circle. Recall that if C is a circle centered at O with radius r and X is a point distinct from O, then the inversion of X over C is the point Y on the ray \overrightarrow{OX} such that $|OX| \cdot |OY| = r^2$.

For motivation, we revisit the results of [1]. Polynomials of the form

$$p(z) = (z - 1)(z - r_1)(z - r_2)$$

with $|r_1| = |r_2| = 1$ have two critical points. If one critical point, c_1 , lies on the circle $A_{1/2}^1$, then the other critical point, c_2 , also lies on $A_{1/2}^1$ with $c_2 = \overline{c_1}$. Otherwise, the critical points lie on opposite sides of $A_{1/2}^1$. In this case, A_1^1 , the unit circle, is the inversion of $A_{1/3}^1$, the boundary of the desert region, across $A_{1/2}^1$.

For a = 0, [3] establishes similar results with $A_{\sqrt{1/3}}^0$ being the circle of inversion. As this structure is present for the extreme values of a = 0 and a = 1, one might expect similar results for $a \in (0, 1)$.

Definition 5.1 For $a \in [0,1]$, we define C_I to be the circle

$$\left(x - \frac{a}{2}\right)^2 + y^2 = \frac{1}{3} - \frac{a^2}{12}$$

Observe that when a = 1, we have $A_{1/2}^1 = C_I$, and when a = 0, we have $A_{\sqrt{1/3}}^0 = C_I$. However, when $a \notin \{0, 1\}$, C_I is not an A_b circle. We claim that A_1 is the inversion of $A_{1/3}$ across C_I .

Lemma 5.2 The circles A_1 and $A_{1/3}$ are inversions with respect to C_I .

103

The pump journal of undergraduate research ${f 2}$ (2019), 95–106

Proof. Since A_1 , $A_{1/3}$, and C_I are symmetric across the real axis, it suffices to show that the two pairs of real numbers $\frac{2}{3}a + \frac{1}{3} \in A_{1/3}$ and $1 \in A_1$, and $\frac{2}{3}a - \frac{1}{3} \in A_{1/3}$ and $-1 \in A_1$ are inversions across C_I . Setting $X = \frac{2}{3}a - \frac{1}{3}$, Y = -1 and denoting the center and radius of C_I as $O = (\frac{a}{2}, 0)$ and $r = \sqrt{\frac{1}{3} - \frac{a^2}{12}}$ gives

$$OX| \cdot |OY| = \left| \frac{a}{2} - \left(\frac{2}{3}a - \frac{1}{3}\right) \right| \cdot \left| \frac{a}{2} + 1 \right|$$
$$= \left(\frac{1}{3} - \frac{a}{6}\right) \left(1 + \frac{a}{2}\right)$$
$$= \frac{1}{3} - \frac{a^2}{12}$$
$$= r^2.$$

It follows that $\frac{2}{3}a - \frac{1}{3} \in A_{1/3}$ and $-1 \in A_1$ are inversions across C_I . Similar calculations verify the claim for the other set of points. Therefore, the circles A_1 and $A_{1/3}$ are inversions with respect to C_I .

We are now ready to describe the structure relating critical points of polynomials in P_a .

Figure 5: The circles A_1 and $A_{1/3}$ are inversions with respect to C_I .

Theorem 5.3 Let c_1 and c_2 be the critical points of $p \in P_a$. If $c_1 \in C_I$, then $c_2 = \overline{c_1} \in C_I$. Otherwise, c_1 and c_2 lie on opposite sides of C_I .

Proof. Let $p \in P_a$ have critical points c_1 and c_2 .

Suppose $c_1 = x + iy \in C_I$. For $\cos(\theta) = \frac{3x-a}{2}$, $r = e^{i\theta}$, and

$$p_r(z) = (z-a)(z-r)(z-\overline{r}) \in P_a,$$

we will verify that c_1 is a critical point of p_r . Direct calculations give

$$p_r(z) = 3z^2 - 2(a + r + \overline{r})z + r\overline{r} + ar + a\overline{r} = 3z^2 - 2(a + 2\cos(\theta))z + 1 + 2a\cos(\theta) = 3z^2 - 6xz + 1 + 3ax - a^2.$$

As $c_1 \in C_I$, $c_1\overline{c_1} = ax + \frac{1}{3} - \frac{1}{3}a^2$ and it follows that

$$p_r(z) = 3z^2 - 3(c_1 + \overline{c_1})z + 3c_1\overline{c_1} = 3(z - c_1)(z - \overline{c_1}).$$

Therefore, p_r has critical points at c_1 and $\overline{c_1} \in C_I$. By uniqueness, $p_r(z) = p(z)$, and if $c_1 \in C_I$, then $c_2 = \overline{c_1} \in C_I$.

Suppose $c_1 \notin C_I$. We use a dragging argument to show that c_1 and c_2 lie on opposite sides of C_I . Without loss of generality, suppose to the contrary that c_1 and c_2 lie strictly inside C_I . As we drag c_1 along a line segment, contained strictly inside C_I , to a point on $A_{1/3}$, Example 2.3 and the uniqueness from Theorem 4.1 implies that c_2 travels along a continuous path to A_1 . By the Intermediate Value Theorem, c_2 must cross C_I at some point c_{2,t_0} . By the first part of this theorem, $\overline{c_{2,t_0}} = c_{1,t_0} \in C_I$ which contradicts the fact that c_1 is strictly inside C_I . Therefore, c_1 and c_2 lie on opposite sides of C_I .

As an interesting observation, we note that for $r = e^{i\theta}$, $p_r(z) = (z - a)(z - r)(z - \overline{r})$ will not always have critical points on C_I . As r moves around the unit circle, there are threshold values of θ where the critical points move from C_I to the real axis. For

$$\theta_{\pm} = \arccos\left(\frac{a \pm \sqrt{12 - 3a^2}}{4}\right),$$

the set of points $\{a, e^{i\theta_+}, e^{-i\theta_+}\}$ and $\{a, e^{i\theta_-}, e^{-i\theta_-}\}$ form equilateral triangles. With this observation in mind, direct calculations give: If $\theta \in [\theta_-, \theta_+]$, then $p_r(z)$ has critical points on C_I ; If $\theta \in (0, \theta_-) \cup (\theta_+, \pi)$, then $p_r(z)$ has real-valued critical points not on C_I .

This completes the characterization of critical points of polynomials in P_a . Our results can be extended to polynomials of the form

$$p(z) = (z - a)^k (z - r_1)^m (z - r_2)^n$$

with $|r_1| = |r_2| = 1$ and $\{k, m, n\} \subseteq \mathbb{N}$ with m = n. Similar to P_a , the unit disk contains a desert region bounded by $A_{\frac{k}{2m+k}}$ and a critical point almost always determines a polynomial uniquely. However, many open questions remain. For example, what happens when $m \neq n$?

Acknowledgments

The authors wish to express their gratitude to the anonymous referee for excellent suggestions that improved the paper.

References

- C. Frayer, M. Kwon, C. Schafhauser, J.A. Swenson, The Geometry of Cubic Polynomials, *Math. Magazine*, 87 (2014), 113–124.
- [2] C. Frayer, Geometry of Polynomials with Three Roots, *Missouri Journal of Mathematical Sciences*, 29 (2017), 161–175.
- [3] C. Felton, C. Frayer, Geometry of a Family of Complex-Valued Polynomials, preprint.
- [4] M. Marden, Geometry of Polynomials, American Mathematical Society, 1966.
- [5] S. Northshield, Geometry of Cubic Polynomials, Math. Magazine, 86 (2013), 136–143.
- [6] M. Partenskii, The Circle of Apollonius and Its Applications in Introductory Physics, The Physics Teacher, 46 (2008), 104–108
- [7] E. Saff, A. Snider, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering, Prentice-Hall, 1993.

Christopher Frayer University of Wisconsin - Platteville 1 University Plaza Platteville, WI E-mail: frayerc@uwplatt.edu

Jamison Wallace University of Wisconsin - Platteville 1 University Plaza Platteville, WI E-mail: tibbettsj@uwplatt.edu

Received: May 9, 2019 Accepted: May 31, 2019 Communicated by Serban Raianu