
Dense Orbits of a Two Point Algebra

A. Andonie and D. Lara

Abstract - Finite dimensional algebras over a field can be classified into three classes
by representation type. These are finite, tame, and wild. Wild algebras contain copies
of the representations of all finite dimensional algebras so classifying the indecomposable
representations is not feasible. We then look at representations whose orbit is dense in
their associated irreducible component of their representation variety. With this geometric
perspective, we can approximate our representations. We give an example of a two point
dense orbit algebra of wild representation type and show that it has a dense orbit for
dimension vectors of certain types.
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1 Introduction

1.1 Context and Motivation

The representation types of algebras have been classified by the Trichotomy Theorem of
Drozd, [2]. These are

1. Finite: Up to isomorphism, there are finitely many representations.

2. Tame: For each fixed dimension d, there exist finitely many families of representa-
tions that depend on at most one parameter.

3. Wild: Given an arbitrary positive integer N , there exists a family of representations
that depend on N parameters.

From this description, classifying the representations of wild finite dimensional algebras is
not possible. However, there is a way to “approximate” the representations for some wild
algebras by looking at the indecomposable representations that yield a dense orbit. A
dense orbit algebra is an algebra that has a dense orbit in each irreducible component of its
representation variety for each dimension vector. It is conjectured that every dense orbit
algebra has finitely many indecomposable representations whose orbits are dense in their
respective irreducible components. If this conjecture is true, classifying the representations
whose orbits are open in their respective subvarieties becomes a finite problem.
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1.2 Main Result

The goal of this project is to broaden the example base of dense orbit Algebras and the
techniques in how to find them. The main result is as follows.

Theorem 1.1 Let Λ be the algebra given by the following quiver and relations.

1
a

2
b

c
a7 = b3 = ca− bc = 0 (1)

This is an algebra of wild representation type and each irreducible component of the rep-
resentation variety repΛ(d) has a dense orbit for dimension vectors of type d = (p,q) =
(p1 + p2 + p3, q1 + q2 + q3) where pi, qj ∈ Zn>0 with p1 > p2 > p3, q1 > q2 > q3 and p, q
have parts of sizes at most 7 and 3 respectively.

This algebra has been shown to be of wild representation type by Hoshino and Miyachi
[3]. We conjecture that the algebra Λ has a dense orbit for all dimension vector d but a
complete proof does not seem within reach at the moment.

2 Background

For a more in-depth review of quiver algebras and their representations, we refer the reader
to [1]. Quivers and quiver representations are tools that let us have a visual representation
of an algebra and its modules. Every finite dimensional algebra over an algebraically closed
field corresponds to a quiver with relations and the modules of the algebras correspond to
the representations of the quiver. Therefore, we will define everything in terms of quivers
and their representations.

2.1 Quivers and Quiver Representations

A quiver is a directed graph. More formally, a quiver is a quadruple Q = (Q0, Q1, s, t)
where Q0 is the set of vertices, Q1 is the set of arrows and s, t : Q1 → Q0 are functions
from the set of arrows to the set of vertices. That is, a quiver is a directed graph where
loops and multiple arrows from a vertex are allowed. The maps s, t state where the arrows
start and end. Given α ∈ Q1, s(α) is called the source of the arrow and t(α) is called the
target of the arrow.
For the rest of this article, assume that k is an algebraically closed field. Given a quiver
Q, we define a quiver representation by placing k-vector spaces in each of the vertices and
linear maps on the arrows. That is, if Q = (Q0, Q1, s, t) then a quiver representation M of
Q is a collection (Mi, ϕα){i∈Q0,α∈Q1} where each Mi is a k-vector space and ϕα : Ms(α) →
Mt(α) is a linear map. A path σ is defined to be a sequence of arrows

σ = αn · · ·α1,
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where t(αi) = s(αi+1). We also include the trivial paths ei at each of the vertices. For a
non-trivial path σ = αn · · ·α1, an evaluation of a representation M on a path σ is defined
to be

ϕσ = ϕαn ◦ · · · ◦ ϕα1 .

A relation is a linear combination of paths. A representation M = (Mi, ϕα)i∈Q0,α∈Q1 is
said to be bound by a relation

∑n
i=1 aiσi if

n∑
i=1

aiϕσi = 0.

We now define the main algebraic object of interest, the quiver path algebra. A quiver
path algebra kQ of a quiver Q is a vector space that is formed by the set of all linear
combinations of paths and multiplication of paths is defined as concatenation of paths.
That is, given two paths σ = αn · · ·α1, ω = βm · · · β1 the product is then defined as

ωσ = βm · · · β1αn · · ·α1

when t(αn) = s(β1) and 0 otherwise. The ideal RQ is the arrow ideal of the path algebra
kQ. A two sided ideal I is said to be admissible if there exists n ≥ 2 such that

Rn
Q ⊆ I ⊆ R2

Q.

Given a finite dimensional algebra A, we can construct a quiver whose path algebra (mod
an admissible ideal) is isomorphic to A.

Theorem 2.1 For every k-algebra A there is an associated quiver Q and an admissible
ideal I of kQ such that

A ∼= kQ/I

In addition, it is known that every finite dimensional algebra over an algebraically closed
field corresponds to a bound quiver algebra kQ/I whose representations categories are
equivalent. For the rest of the article, let A ∼= kQ/I be a bound quiver algebra.

We next define the direct sum of representations for a bound quiver Q with relations
R. Given two quiver representations M = (Mi, ϕα) N = (Ni, ϕα), the direct sum of M
and N is defined to be

M ⊕N := ((Mi ⊕Ni, ϕα ⊕ ϕα).

A representation is indecomposable if it cannot be written as a non-trivial direct sum.
Given a dimension vector d : Q0 → Z≥0, we study the representation variety

repQ(d) =
∏
α∈Q1

Matd(hα),d(tα)(k),

where Matm,n(k) denotes the space of matrices with m rows, n columns, and entries in
the field k. This representation variety is a collection of representations of the quiver Q.
The base change group

GL(d) =
∏
x∈Q1

GL(d(x))
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acts on the variety by simultaneous conjugation. That is,

g ·M := (ghαMαg
−1
tα )α∈Q1 ,

This is the collection of all representation that are isomorphic as quiver representations
to M . An orbit is said to be dense in its irreducible component if its closure (under the
Zariski topology) is equal to the irreducible component. We say that an algebra is a dense
orbit algebra if each irreducible component of the variety repA(d) has a dense orbit for
each and every dimension vector d.

2.2 An Example

We illustrate our definitions with an example. Consider the quiver Q

1
α

with relation
α2 = 0.

Our set of vertices is Q0 = {1} and the set of arrows is Q1 = {α}. We then define the
maps that tell us where the arrow starts and ends. t, s:Q1 → Q0 are defined as s(α) = 1,
t(α) = 1.
The quiver path algebra is a familiar object. The basis is taken to be the set of all paths
that are bound by the relation. These are:

e1, α

The path algebra is isomorphic to k[T ]/(T 2). Let A denote the path algebra. Let M be
the following quiver representation.

k2

(
0 1
0 0

)

The representation variety of dimension vector 2 is equal to set of all 2 by 2 matrices
whose square is equal to 0.

repA (2) = {A ∈Mat2,2(k) | A2 = 0}

The group GL(2) acts on repA (2) by conjugation

g · A := gAg−1.
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The orbit of the representation M is the set of isomorphic representations.

O(M) =

{
g

(
0 1
0 0

)
g−1 | g ∈ GL(2)

}
In familiar terms, this is the set of all matrices A that are similar to

(
0 1
0 0

)
. This algebra

is of finite representation type and it is known that all representation finite algebras are
dense orbit algebras. It is often difficult to show that the orbit is dense by brute force.
While we still rely on computations, we redefine our problem in terms of polynomials to
make the computations more feasible.

3 Proof of the Main Result

3.1 Reductions

The method of proof involves finding an open condition the orbit by direct computation.
We reframe the problems in terms of polynomials. Fix a d1 × d1 matrix A and a d2 × d2

matrix B with entries over k. We let p and q denote a partion of d1 and d2 with parts
at most 7 and 3 respectively. We can then identify each pair (A, kd1) (B, kd2) with k[T ]-
modules X and Y respectively. A and B are similar to their corresponding Jordan forms
of eigenvalue zero. The partitions p = (p1, p2, · · ·) and q = (q1, q2, · · · ) then correspond
to the size of the Jordan blocks from largest to smallest. Furthermore, each Jordan block
can be identified with the module Jk := k[T ]/(T k) and hence,

X ∼=
l⊕

j=1

Jpj

X ∼=
m⊕
i=1

Jqi

The relation ca − bc = 0 lets us identify C as a k[T ]-module morphism. The ith row is
labeled by Jqi and jth column is labeled Jpj . The entry of the matrix C in the row labeled
Jl and column Jk represents is a k[T ]-module morphism Jk → Jl so it is represented by
a polynomial f . Furthermore, the relation b3c = 0 requires that f is annihilated by T 3.
Thus F can be taken of the form below, where a, b, c ∈ k

f =



a if l = 1

a+ bT if l = 2

aT l−1 if k = 1

aT l−1 + bT l−2 if k = 2

aT l−1 + bT l−2 + cT l−3 if k, l ≥ 3

The action on the variety corresponds to an action of Autk[T ](X) × Autk[T ](Y ) on
Homk[T ](X, Y ) which translates to row and column operations on our k[T ]-labeled matrix.
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Lemma 3.1 The following operations correspond to actions of elements of the group
Autk[T ](X)× Autk[T ](Y ) on Homk[T ](X, Y ):

(i) multiplication of a row labeled Ji by an invertible element of k[T ]/(T i), and similarly
for columns;

(ii) row operations replacing a row labeled Jj with the sum of Jj and f times a row
labeled Ji, where f ∈ k[T ] if j ≤ i and f ∈ (T j−i) if j > i;

(iii) column operations replacing a column labeled Jj with the sum of Jj and f times a
column labeled Ji, where f ∈ k[T ] if j ≥ i and f ∈ (T i−j) if j < i.

Our main strategy is to perform row and column operations as described in Lemma 3.1
with the additional results. Lemma 3.6 from [4] establishes the general forms of our
irreducible components and therefore we can pick an arbitrary k[T ] labeled matrix of
partition (q,p) and get an open condition via our row and column operations. We use
Corollary 2.2 from [4] that justifies a reduction where it is sufficient to show we either
have a dense orbit or show that a direct sum of the representation has a dense orbit.

3.2 Proof of Main Result

We will prove our result by proving the following series of lemmas.

Lemma 3.2 repΛ(d) has a dense orbit for all dimension vectors d = (d1, d2) if there exist
i, j such that pi = qj = 3 repΛ(d).

Proof. Suppose that for some i, j, pi = qj = 3. A matrix C ∈ Hom[T ](X, Y ) then has
the form below. 

· · · J3 · · ·
... ∗ ∗ ∗
J3 ∗ a+ bT + CT 2 ∗
... ∗ ∗ ∗


In the i, j entry, we first perform a row operation gRi → Ri where g(a+ bT + cT 2) = 1.


· · · J3 · · ·

... ∗ ∗ ∗
J3 ∗ a+ bT + CT 2 ∗
... ∗ ∗ ∗

→

· · · J3 · · ·

... ∗ ∗ ∗
J3 ∗ 1 ∗
... ∗ ∗ ∗


Next, we zero out the terms above this entry with a row operation of type fRJi+RJk → Rk

where f ∈ (T pk−pi) where pi ≤ pk. This is possible because the terms in row Rk must
be of the form aT pk−3 + bT pk−2 + cT pk−1. In addition, we zero out the terms to the left,

the pump journal of undergraduate research 5 (2022), 188–198 193



below, and to the right of this entry with appropriate row and column operations.


· · · J3 · · ·

... ∗ ∗ ∗
J3 ∗ 1 ∗
... ∗ ∗ ∗

→

· · · J3 · · ·

... ∗ 0 ∗
J3 0 1 0
... ∗ 0 ∗


In this case,

( J3

J3 1
)

splits off. �

Lemma 3.3 For a dimension vector d = (d1, d2), if there exist i, j such that pi = qj = 2
for some i, j, then repΛ(d) has a dense orbit for each irreducible component.

Proof. If there exist i, j such that pi = qj = 2, then our matrix C has the following form
with a polynomial of type a+ bT in the i, j entry.


· · · J2 · · ·

... ∗ ∗ ∗
J2 ∗ a+ bT ∗
... ∗ ∗ ∗


Using a similar process to the previous lemma, we first get a 1 entry with a row auto-
morphism. We then move to zero out the terms above this entry which are of the form
aT pk−2 + bT pk−1 with pk ≥ pi. Thus we use row operations of type fRi +Rk → Rk where
f ∈ (T pk−pi). We can clear out all terms to the left of the (i, j) since we do not have any
restrictions doing column operations from right to left. In the other direction, we must
do column operations of type gCqj + Cqr → Cqr where g ∈ (T qj−qr), but since qj = 2 and
qr = 1 or qr = 2, it is possible to zero out all the terms to the right. Lastly, we zero out
the terms below this entry. Row operations in this direction have no restrictions.


· · · J2 · · ·

... ∗ ∗ ∗
J2 ∗ 1 ∗
... ∗ ∗ ∗

→

· · · J2 · · ·

... ∗ 0 ∗
J2 0 1 0
... ∗ 0 ∗


Thus the representation with a dense orbit,

( J3

J3 1
)
, splits off. �

Lemma 3.4 For a dimension vector d where pi = qj = 1 for some i, j,

Proof. When pi = qj = 1


· · · J1 · · ·

... ∗ ∗ ∗
J1 ∗ a ∗
... ∗ ∗ ∗

→

· · · J1 · · ·

... ∗ ∗ ∗
J1 ∗ 1 ∗
... ∗ ∗ ∗


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→


· · · J1 · · ·

... ∗ 0 ∗
J1 0 1 0
... ∗ 0 ∗


Repeating the process of clearing the terms around this entry, the possible terms to the
left and above are aT j−1 or a. The terms to the right and below have the form a. In this
case, there is a 1 by 1 block that splits off. �
In each of these 3 lemmas, we observe that we have a 1 by 1 block that splits off. Note
that we did not assume anything about the lengths of the partitions so these results hold
in general. We will use these results to prove the following. For each lemma below, assume
the partitions p and q satisfy the assumptions as in Theorem 1.1.

Lemma 3.5 If l(q) = 1 and d = (d1, d2) = (
∑3

i=1 pi,
∑3

j=1 qj), then repΛ(d) has a dense
orbit in each irreducible component.

Proof. The representation matrix C then has the following form.


Jq1

Jp1 ∗
Jp2 ∗
Jp3 ∗


For notational simplicity, we use T ∗ to denote a term in a row or column that has no
parameters. From 3 distinct row automorphisms, we can reduce the matrix into the form


Jq1

Jp1 T ∗

Jp2 T ∗

Jp3 T ∗


and see that we have a dense orbit in this case. �

Lemma 3.6 If l(q) = 2 and d = (d1, d2) = (
∑3

i=1 pi,
∑3

j=1 qj), then repΛ(d) has a dense
orbit in each irreducible component.

Proof. The representation matrix C then has the following form.


Jq2 Jq1

Jp1 ∗ ∗
Jp2 ∗ ∗
Jp3 ∗ ∗


We will start with the lower right most entry. We will have 3 cases that depend on the
value of q1.

the pump journal of undergraduate research 5 (2022), 188–198 195



If q1 = 1, then we can assume that pi ≥ 2 for all i by Lemma 3.2. Then using a row
automorphism on the last row, we have reduced our matrix as follows.


Jq2 J1

Jp1 ∗ ∗
Jp2 ∗ ∗
Jp3 ∗ T p3−1


We will zero out the terms above this entry with row operations gRp3 +Rpi → Rpi where
g ∈ (T pi−p3). The entries above this entry are of the form aT pi−1 for some a ∈ k so we
can let g = −aT pi−p3 . 

Jq2 J1

Jp1 ∗ 0
Jp2 ∗ 0
Jp3 ∗ T p3−1


Next, we do a column automorphism to get rid of the parameters in the (3, 2) entry.


Jq2 J1

Jp1 ∗ 0
Jp2 ∗ 0
Jp3 T ∗ T p3−1


and thus we can do 2 more row automorphisms to get an open condition in this case.
In the next case when q1 = 2, we can assume that pi 6= 2 for all i. Since our partitions do
not repeat, we have p = (p1, p2). If p2 = 1, then we start with the (2, 2) entry with a row
automorphism. ( Jq2 J2

Jp1 ∗ ∗
Jp2 ∗ ∗

)
→

( Jq2 J2

Jp1 ∗ ∗
Jp2 ∗ 1

)
We zero out the (2, 1) entry with a column operation

( Jq2 J2

Jp1 ∗ ∗
Jp2 ∗ ∗

)
→

( Jq2 J2

Jp1 ∗ ∗
Jp2 0 1

)
and lastly, we do a row automorphism followed by a column operation to get rid of all
remaining parameters to get an open condition on the representation.

( Jq2 J2

Jp1 ∗ ∗
Jp2 0 1

)
→

( Jq2 J2

Jp1 T ∗ 1
Jp2 0 1

)
�
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Lemma 3.7 If l(q) = 3 and d = (d1, d2) = (
∑3

i=1 pi,
∑3

j=1 qj), then repΛ(d) has a dense
orbit in each irreducible component.

Proof. Since our partitions do not repeat, the representation matrix C has the form


J3 J2 J1

Jp1 ∗ ∗ ∗
Jp2 ∗ ∗ ∗
Jp3 ∗ ∗ ∗


By Lemmas 3.2, 3.3, and 3.4, it must be that pi ≥ 4 for all i. We start with a row
automorphsim in the (3, 1) entry to get rid of the parameters.


J3 J2 J1

Jp1 ∗ ∗ ∗
Jp2 ∗ ∗ ∗
Jp3 ∗ ∗ ∗

→


J3 J2 J1

Jp1 ∗ ∗ ∗
Jp2 ∗ ∗ ∗
Jp3 T p3−1 ∗ ∗


We then zero out the terms to right of this entry. This is possible since the terms to

the right of this entry are either of the type aT p3−2 + bT p3−1 or cT p3−1 for some a, b, c ∈ k
and we are allowed to column operations of the type gCq3 +Cqi → Cqi where g ∈ (T q3−qi).
Similarly, we also zero out the terms above the (3, 1) entry.


J3 J2 J1

Jp1 ∗ ∗ ∗
Jp2 ∗ ∗ ∗
Jp3 T p3−1 ∗ ∗

→


J3 J2 J1

Jp1 0 ∗ ∗
Jp2 0 ∗ ∗
Jp3 T p3−1 0 0


and in this case we have that a representation that splits off. �
By the lemmas above, Theorem 1.1 is proven.

4 Future Work

Future work would automate the current reduction process by means of a computer pro-
gram, thus speeding up the process by not doing the reductions by hand. At the moment,
a program has already been built which can reduce small matrices with low dimension
parameters, however it has yet to be fully completed. The program, written in Python,
follows the reduction process shown in the previous section and reduces one entry at a
time till the matrix cannot be reduced further. The program allows a user to enter the
size of the matrix and the desired parameters. Once these are given, the program will
proceed to reduce the matrix and show the user a step-by-step reduction of the matrix.
This program can continue to be developed to reduce any size matrix with larger dimen-
sion parameters, notify the user if their input was invalid, and have a nicer user interface.
If one is interested, one can find the Python code and file in [5]
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We showed that we have a dense orbit for dimension vectors of certain size. We
conjecture that this is a dense orbit algebra but a proof does not seem within reach at
the moment. Though we have a strategy for certain partitions, it becomes very difficult
to cover arbitrary partitions of type p = (p1, p2, · · · ) and q = (q1, q2, · · · ). Further work
must be down to narrow down the partitions that give rise to irreducible components. We
end with the following conjecture which we strongly suspect to be true based on a very
similar problem done in [4].

Conjecture 4.1 Let Λ(m,n) be the algebra given by the following quiver and relations.

1
a

2
b

c
am = bn = ca− bc = b3c = 0 (2)

This is an algebra of wild representation type except for certain small values of m and n
and is a dense orbit algebra for all m,n.
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