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Abstract - Let a(n) be the sum of digits of n written in base 2. In 1948, R. Bellman
and H.N. Shapiro proved that Engx a(n) = g%gi‘; + O(xloglog z). However, there was a
mistake in their proof. We are able to correct the mistake and walk in their footsteps while
retaining their idea and method to prove the theorem. We also generalize their method to

prove the same theorem for general base.
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1 Introduction

Let ¢ > 1 be a fixed integer and denote by a,(n) the sum of digits of n written in base
q. Let f(x) and g(x) be real-valued functions and g(x) be positive for all large enough
values of . We write f(z) = O(g(x)) if there exists a positive real number M and a real
number z such that |f(z)| < Mg(z) for all x > x. It was L.E. Bush [3] who first showed
in 1940 that

-1
A (x) = Zaq(n) ~ glogql’logw as T — 00. (1)
n<x
In 1949, L. Mirsky [6] proved that
Ay(z) = 210_gq:vlogx+(’)(x), (2)

using a special way to count numbers with a certain representation in base ¢. It was shown
that O(x) is the best possible error term. A weaker error term, namely O(x loglog x), for
base 2 was discovered a year earlier by Bellman and Shapiro [2]. Many other authors have
proved later on using different methods (see [1], [4] and [5]). For example, Ballot in
[1] defined a special function B,(N) which is equal to A,(N) at a power of ¢, but different
at other numbers. By bounding the difference A,(N) — B,(N), the author was able to
show that A,(N) — B,(N) = O(N). After proving an asymptotic formula for B,(N), (2)
was established.

This paper stemmed from noticing what seemed — at first — a major mistake in
Bellman and Shapiro’s proof. The mistake came in the formula [2 (3.10)] with a wrong
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evaluation of Ay(N). Here, we evaluate Ay(N) properly while, nevertheless, following
their proof and idea to obtain the same error term. The corrected formula appears in
equation here. We mostly use their notation too. What distinguishes the Bellman—
Shapiro method from other approaches is the introduction of a parameter p(N) for where
to split a sum S into two subsums involved in expressing As(N). They then choose p(N)
so the two partial subsums have the same order of magnitude. In Section 1, we revise
Bellman and Shapiro’s proof and prove the following theorem.

Theorem 1.1 We have

xlogx
Ay(z) = 210§2 + O(xloglog x).

In Section 3, we proved the same theorem for general bases.

Theorem 1.2 We have

Ay(z)

= 21qua:log:c + O(zloglog x).

2 Proof of Theorem 1.1l

Proof. Let a(n) = as(n). From the dyadically additive property of a(n), it follows that

A2 = D ak)+ D> a@ ) +a@)

1<k<2n—1 1<r<2n-1
=A2" )+ [ =)+ A 2" ) —a@2 )] +1
=24,2" ) + 2" - 1.

Iterating this relationship, we obtain

Ap(2") =2(24,(2" ) + 2" P = 1) + 2" =1 =22A4,(2" %) 4221 -3
=2°(24,(2" %) 42" —1) + 2. 2" =3 =224,(2" %) 432" =7
=2°(24,(2" ) 420 = 1) +3- 20— T =20 4,27 ) 442" = 15
= ... =2"A( 2" 42" (2" 1) =n2" 4 1

If N=2m 42" ... 4 2™ with n; > ng > -+ > ny, then

AN =D ak)+ > alk)+--+ > a(k)

k<2m 2M <k<2714272 2714272 4o 27— 1 <[ <2M 4272 4 20
= E a(k) + E a2+ k) + E a2 +2" k) 4 -
1<k<2m1 1<k<2m2 1<k<2m3
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= A(2) (2 + Ap(2)) + (2027 + Ap(27)) o (= 1) 2" + Ap(2™))

t

— ZA2(2"i) + Z(z‘ — 12" =) (n2" T 1)+ Y (i —1)2"

=1 =1

t t
- % D n2M 4y (i - 1)2" 4t
i=1 =1

Thus, the corrected formula for Ay(N) is

t t
1 , ) ,
=3 D m2 ) (i —1)2" 4t (3)
i=1 i=1
instead of .
1
522"+ N,
i=1

in the Bellman Shapiro paper [2].

Let S = Znﬂm Zaj ny — j)2™ 77, where a; = 0 or 1 depending upon the

i=1 7=0
presence or absence of 27177 in the sum N = 2" 4272 4 ... 4+ 2™ Then
1(N)
S = Za]nl—jQMJ—l— Z nl—]2”1]
Jj=0 j=p(N)+1

where ny > u(N) + 1 > 1, and pu(N) will be chosen advantageously below.

1(N) 1(N)
S = T Z aj2”1_j — Z ajj2”1_j + O(’I’L12n1_'u(N))
j=0 J=0
ny ny N(N)
=1 Z aj2”17j — N1 Z aj2"17j - Z ajj2"17j + O(n12”1*“(N))
§=0 J=n(N)+1 =0

= N + O(ny 2" M) 4+ O(u(N)2™) + O(ny 207+
= N + O(u(N)2™) 4 O(n 2 ~#N)),
Choose p(N) to make the two error terms of comparable size, i.e., such that
ny2m AN — (N )2™
or  m 27N = §(N).
Additionally,
N =2M 42" . 2™ =M (14 2m7™M 4. 2T
logy N = ny + logy(1 4 2™ .. 4 2M77),

Since 1 < 142m7™ 4 ... 42M™™" < 2 we have
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Thus, ny = |log, N| = L

Therefore,

It follows that pu(N) ~

0< 10g2(1 A I S 2nt*n1) <1
ny < logy, N <njy+ 1.

log N
log2 |

J(N) = VogNJ o-u(N)

log 2
log(log IV) as N — oo. Thus
log 2 ' ’
Nlog N
- + O(N loglog N).
log 2

t
Now, let R = Z(z —1)2" 4 t. To prove the theorem it suffices to show that R = O(N).
=1

But we can Shz)w more precisely that R < N.

A table of N < 32 values, binary representation, R values, and the increase in R values
is presented below. The table shows some repeating patterns and suggests that R < N.
A graph of R versus N is also included below.

N | Binary | R R | Increase of R
1 |1 1+4+0-20 1

2 10 140-2! 1 0
3 |11 240-21+1.29 3 |2
4 1100 14+0-22 1 -2
5 101 240-224+1-29 3 |2
6 | 110 240-2241-2¢ 4 |1
7 111 340-2241-2142.20 7 13
8 1000 140-2° 1 |-6
9 1001 240-2241-20 3 |2
10 | 1010 240-254+1-21 4 |1
11 ] 1011 340-2541-2142.20 7 13
12 | 1100 240-2341-22 6 |-1
13 ] 1101 340-2541-2242.20 9 |3
14 | 1110 340-254+1-2242.21 1112
15 | 1111 440-224+1-2242-2143.20 15 | 4
16 | 10000 | 14+0-2% 1 [-14
17 | 10001 | 2+0-2*4+1-20 3 |2
18 [ 10010 | 2+0-2*+1-21 4 |1
19 [ 10011 [3+0-2*+1-2142.20 7 13
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20 [ 10100 |[2+0-2*+1.22 6 | -1
21110101 |34+0-2*41-2242.20 9 |3
22110110 |34+0-2*+1-2242.2! 1112
23110111 |44+0-2*4+1-2242.2043.20 15 | 4
24 111000 |2+0-2%4+1-2° 10 -5
2511001 |3+0-2*4+1-2342.20 13]3
26 | 11010 |3+0-2*4+1-234+2.2! 152
27 | 11011 [ 4+0-2*+1-23+2-.214+3.20 19 | 4
28 | 11100 |3+0-2*41-2342.22 19]0
20 | 11101 |44+0-2*4+1-2342.2243.20 23 | 4
30 [ 11110 |4+0-2*4+1-2342.2243.2¢ 26 | 3
31 11111 |54+0-22+1-234+2.224+3-21+4.29[31 5
321100000 [ 1+0-2° 1 |-32

40 60 80 100 120

20

Table 1: R vs N
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Here we prove R < N. Consider

N—R:izni— (Zt:(z—1)2”i+t>

i=1
=2M — (2™ 42-2M £ 32" .. 4 (—2)2™ + 1).

Note that

27’L3 + 2’rL4 _'_ 2”5 + “ e + 27’Lt S 2”2 - 17
2’]’1,4 + 2”5 _|_ PR + Qnt S 2”3 - 1,
2n5+...+2ntS2n4_1a

2nt—1 ‘l‘ 27lt S 27%—2 _ 1’
2m < oMt — .

If we sum up all the inequalities above, we have

M 4 2.2M £ 3.2 e (£ —2)2M 2™ 4 2™ 4 4 2™ — (£ — 2)
2M8 4 2.2 £ 3.2 e (= 2)2M < 2™ 2T e 2 D
<2M —1-2" 42
<2M — (2™ —1)
<2m,

Therefore, N — R > 0 and R < N. It is interesting to note that we only have an
equality when all n; are consecutive and n; = 0. In other words, ® = N only when
N = 2" — 1 for some n. This can be seen from the table and the graph above.

Now, we have proved the following:

_ NlogN

3 Proof of Theorem [1.2|

Let ¢ > 2 be an arbitrary base. To use the same method as in the base 2 case, we first
derive a formula for A,(¢"). This formula is proved in [I] using a different method. The
author used a clever way to pair terms in the sum. Here we use a recursive method to
prove the formula.
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Lemma 3.1 Let Ay(z) = Y, a,(k) where ay(k) is the sum of digits of k written in
base q. Then

A, q") = Z a,(k) =1+ a 5 ng".

k<q"

Proof. Following the idea from [2], we split the sum first at ¢"~!. A difference here is
that we also need to run through different coefficients of ¢"~!.

A=Y o®) = 3 o)+ Y (

nfl_l

Z a(m- ¢t +r)+a((m+ 1)q"‘1)>

k<q" kgq”—l
q—1 ¢ 1-1 q—1
= Z alk) + Z ( Z alm-q" "+ r)) + a((m + 1)q”_1)
k<gn—1 m=1 r=1 m—1
q—1 q"_lfl qg—1 q"_lfl
= Z a(k) + Z ( Z a(m - q"_l)) + ( a(r))
k<qn—1 m=1 r=1 m=1 r=1
qg—1
- Z a((m + 1)g" 1)
m=1
q—1 " -1 qg—1
=Y ak)+ ) m@ =1+ (g-1) a(r)+> m
kSqn71 m=1 r=1 m=1
q—1 g1 q—2
= Z alk)+ Y m@ ' =1+ (@-1)) alr)+ Z m
k<qn—1 m=1 r=1 m=1
q—1 q—1 q—2
=qA, (" ")+ ¢" 1Zm— Zm—l—Zm
m=1 m=1 m=1
—1
=qA (") + ¢ (q<q2 )> (¢—1)
ne1y , =1 4
=qAy(¢") + 54" = (1)
—1 -1
=q [qu(fJ"‘Q) + qan_l —(q - 1)] + qTq" —(q—1)
=" Ay(q" ) +2- =" —qlg—1) = (¢ = 1)
n— q— 1 n
=A@ ) +3 5" —la— ) —alg =D = (g - 1)

2

n n—n q n e
=q"A(¢"") + - "= (-0 +qg+g+-+q"
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Now let N = c1¢™ + 2™ + c3¢™ + - - - + ¢;q™, where ny > ny > --- > n; > 0. Note
that in the base ¢ expansion of N, the coefficients are not necessarily 1. Thus, we need a
formula for A,(c,g") while the base 2 case only needs a formula for A5(2"). Fortunately,

when we split the sum A,(c,q") at different multiples of ¢", we recover many copies of
A,(q™). Thus, we have

Ageaq™) = Y alk)

k<cng™
= Z a(k) + Z al@"+r)+a(2-¢") -+ Z e, — 1)g" +71)
1<k<qn 1<r<gn—-1 1<r<qgn—1
+ a(cng")
=A@+ (@ =D+ D alr)+a@-q") + -+ (e —1)(g" — 1)
1<r<gn—1
+ Z )+ alcng")
1<r<gn—1

=c, Ag(q") +¢"(1+2+ -+ (¢ — 1))

e

B cn(qg—1) en(en — 1)\ ,
=c, + ( 5 n + 5 q-.

This formula generalizes the formula in Lemma [B.1] Now we can look at Ay (N).
Similar to the base 2 case, we split the sum A,(N) at sums of different numbers of the
first few summands of N. Thus, we have

AN)= 3" alk)+ > a(k)+---

k<ciq™ c1q" <k<ciq"1+c2q"2

+ > a(k)

c1q™ +caq2+-+er—1¢"t 1 <k<c1q™1+4caq™2++crg™t

= Z a(k) + Z alclg™ +r)+---

k<ciq™1 1<r<caq™2
+ g alcq™ + g™+ -+ g +T)
1<r<ciq™t
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= Z alk) + Z alc1g™) + Z alr)+ -+

k<cig™ 1<r<ca2q™2 1<r<ca2q™2
> alag" F gt aad" )+ Y
1<r<ciq™t 1<r<ceq™t

=A,(c1q™) + ¢ - cgq”2 + Ay(c2g™) 4+ -+ (ar+ o+ +a1)aq™ + Ay(ag™)

t
= ZA C2 —|— Z (Cz+1 ZCJ> Nit1
i=1
t t—1 %
5 [Ci N (Ci(qQ— D, , a1 > } S (Cz+1 CJ) .
i=1 i=1 1

]:

t c.( — 1) C.(C. _ 1) t 1 :
= Z (%nl + %) qv + Z ¢+ Z <Ci+1 Z Cj) g+
‘ i=1 i=1 =1

=1
t t t
B cilg—1) cilci — 1)\ . n;

Similar to the base 2 case, there are two parts in the formula of A,(/N). They both
behave in the same ways as the two parts in the base 2 case respectively. To show that,
we first let

t

t t

C; —1 C; Ci—l n: r

Sy = E:( (q2 )nﬁ- : 2 ))qlandRqZE CHrE (cr+co+ -+ cimi)eq™.
i=1 1=2

=1

We will prove the general results, namely

q—1 NlogN
2 log q

Sy = + O(Nloglog N) and R, < N.

Then, Theorem will follow.

Now we proceed the p(N) approach to S,. We have

S, :Zt; <ci(q2— D, Ci(ciQ— 1)>qm~ _ i%(@(m s dj(de— 1))qm_j

1=

n(N)
dla=1), . dd =D\ .
= aj(]T(nl—])-l- J J2 1—J
7=0
M lda-1), L dld =D L
fz %(JT(m—J)Jr% g
J=p(N)+1
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where n; > u(N)+ 1> 1, and pu(N) will be chosen advantageously below. Then

w(N) #(N)
d](q_l ni q_l ni d(d]_l) ni—j
Sq:nlzoaj<T> —Z ( ]q ]+ZGJ T q J
J:
+ O(nlqm—M(N))

WALV (TG ) s o+

J=0 J=n(N)+
O(q™ M) 4+ O(nyg M)

-1 i .
S g+ Olmg )+ O((N)g™) + Olmag =)
=0
“O U N+ OUN)g™) + O(mag
SN + 0N + O(mg ),

Consider that,

N =c1q" + 2" + 3™ + -+ - + g™
logq N = lqu(qnl (Cl -+ CQqnzfm + qungfru S thntfn1>>
logq N = ny + logq(01 + CQanfm T C3qn3*n1 N thntinl>.

Since
1< +eq™ ™ +esq™ ™+ + e 1<(q—1)ZE=q,
i=0
we have

0 S 10gq<cl —+ C2qn2*n1 + C3qn3*n1 4+ e+ thntfm) <1
ny <log, N <ny +1.

logNJ

log q
Now choose p(N) so the two error terms are of the same magnitude:

Thus, n; = [log, N| =

p(N)g™ = nygm ™)
p(N) =nyg

log N | _
gq

log(log NV)

as N — o0.
log q

Taking logarithms on both sides, we see that, pu(N) ~
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Thus,

_q—1 NlogN
2 log q

Sq + O(N loglog N).

Now we prove R, < N. Although each coefficient of ¢"* in R, looks more complicated
with a sum, we are still able to split them in the same way as in the base 2 case. We first
write out the sum,

t
Rq:cl-cg~q”2+(01+c2)cg-q”3+-~~—|—(cl+02—|—~--+ct,1)ct~q”t—|—Zcz‘-
=1

Note that,
CLoca- e cs gt e Mt e e g < a(d™ - 1)
Ca-c3 g Ay @M Aoy q" < ca(q™ - 1),
caca- g+ ez " <es(q™ 1),

Ce—1* Cp* Qnt < Ct—l(an1 - 1)-

If we sum all the inequalities above, we have

R, <aq™+ g™+ 4+ c1¢" + ¢ < N.

Note that we only have an equality if all n; are consecutive, n; = 0, and all ¢; = ¢ —1,
ie., N =¢" — 1 for some n.
Therefore, we have now proved

~q—1 NlogN
2 log q

A (N) + O(Nloglog N).
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