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1 Introduction

The concept of Hausdorff dimension is intimately bound up with the study of fractals; for
instance Mandelbrot’s well-known assertion that a fractal is characterized by the Hausdorff
dimension strictly exceeding the topological dimension. In some special cases it is easy
to compute. The Koch curve can be defined using four translated contractions of itself.
Since the scaling factor is 1/3 and four non-warping contractions are used, the Hausdorff
dimension of the Koch Curve is exactly log3 4. In contrast, it is a remarkable fact that
for arguably the earliest known example of a fractal, namely Weierstrass’ monster, the
precise computation of the Hausdorff dimension was an open problem until quite recently.
The essential difficulty is that the contraction mappings defining the fractal have uneven
warping, which complicates matters significantly.

The Hausdorff dimension of the graph of the function

Wa,b(x) =
∞∑
n=0

an cos(2πbnx)

where x ∈ R, b ∈ N, and 1
b
< a < 1, was long conjectured to be D := 2 + logb a. This

was settled by Shen [12] in 2018. The classical examples of Weierstrass were of the form
b ∈ N and ab + 1 > 3π

2
. These became famous in the mathematical world as they were

the first published examples of functions which are everywhere continuous yet nowhere
differentiable.

Throughout this paper b ∈ N and 1
b
< a < 1. Let φ be a C1 function defined on [0, 1],

and also denote by φ its Z-periodic extension to R. Set

wφa,b(x) =
∞∑
n=0

anφ(bnx).
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Figure 1: A classical Weierstrass curve

If F ⊂ R2, let dimH [F ] denote the Hausdorff dimension. Given a function w : R → R,
graph(w) ⊂ R2 will denote the graph of the function. We can now state Shen’s Theorem:

Theorem 1.1 (Shen) There exists a K0 = K0(φ, b) > 1 such that if 1 < ab < K0, then

dimH [graph(wφa,b)] = D.

Clearly the classical examples of Weierstrass follow on setting φ(x) = cos(2πx) and choos-
ing a and b appropriately. Since D > 1, this in particular produces many examples of
fractals.

Shen’s work is the culmination of many years of research beginning with the work of
Bescovitch-Ursell [5]. Of particular interest to us is the well-known estimate

dimH [graph(wφa,b)] ≤ D. (1)

The argument to establish this is standard, but indirect; see Section 2 of [1] for details.
One uses the fact dimH [F ] ≤ dimB[F ], where dimB denotes the box-counting dimension
and F ⊂ R2. The box dimension of graph(w) is then estimated via studying local oscilla-
tions in terms of Hölder continuity. Consequently, the main question in the field has been
to understand lower bounds for the Hausdorff dimension, and Shen’s theorem answers
this question for a wide family of examples. We also refer the interested reader to the
related works [2], [8], [9], and [11].

Our result is the following.

Theorem 1.2 If |φ′(x)| ≤ 1 and a2 + a
b
< 1, then

dimH [graph(wφa,b)] ≤ logh(1/b),

where

h =

√√√√1

2

[
2

b2
+ a2 +

√
4

b4
+ a4

]
.
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It is not hard to see that logh(1/b) > D; write D = logb(b
2a) and change the base of the

logarithm on the right hand side. This means our bound is always worse than Equation
(1). We already know that this must be the case since Shen’s Theorem states that D
actually is the Hausdorff dimension for a wide class of examples. The merit of our result
is that it avoids estimating the Hausdorff dimension via the approach of estimating the
box-counting dimension, but rather uses the theory of iterated function systems (IFS).
Our main technical achievement is the observation that there is a global upper contraction
bound on the IFS determined by φ under our assumptions.

Many standard examples of IFS are given by linear transformations, written as 2× 2
matrices with constant coefficients (see [4] for many such examples). The techniques
of our proof will also apply in these instances. The case of Weierstrass curves was more
interesting to us as the coefficients of the matrix vary, so estimating the contraction factors
is harder. We would expect further examples of fractals could also be analyzed in this
framework.

2 Setup

Here we set up some basic notation and definitions. Throughout we work in the standard
metric space W = [0, 1] × R ⊂ R2. Standard texts explaining the basics of IFS are [3]
and [6], following the foundational work of Hutchinson [10]. Let {Si}bi=1 be contraction
mappings on W with contraction factors {ui}bi=1. The class of non-empty compact subsets
of W equipped with the associated Hausdorff metric then has associated contraction
mappings, also denoted Si, with the same contraction factors. Let F be the invariant set
for {Si}, i.e.

F =
b⋃
i=1

Si(F ).

The basic idea underlying the theory of IFS [3] is that the existence and uniqueness of F
is granted by the Banach fixed-point Theorem.

Definition 2.1 Given a set F ⊂ R2 with δ-covers Ui, we define the Hausdorff s-content
Hs(F ) to be Hs(F ) = inf

∑
i |Ui|s, where the infimum is taken over all such possible δ-

covers. The Hausdorff dimension dimH(F ) is defined to be the infimal positive s such that
Hs(F ) is finite.

Lemma 2.2 dimH [F ] ≤ s, where
∑b

i=1 u
s
i = 1.

Proof. See Theorem 8.8/Exercise 8.5 of [6]. The open set condition required is satisfied
taking V to be a small open tubular neighbourhood of F\{x = 0, 1}. �
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3 Contraction mappings associated to Weierstrass curves IFS

Endow W ⊂ R2 with its usual metric space structure. It is standard [1] to rewrite the
graph of a Weierstrass curve as an IFS using the mappings

Si(x, y) =

(
x+ i− 1

b
, ay + φ

(
x+ i− 1

b

))
1 ≤ i ≤ b. (2)

There are various related definitions of an IFS in the literature. Our definition, following
[3], is sometimes referred to as a hyperbolic IFS: each Si is a contraction mapping. In
[1] and [2], Equation (2) defines a smooth nonlinear system with two negative Lyapunov
exponents which they also call an IFS. This is a little different to our definition because
the mappings (2) are not assumed to be contraction mappings. However, under our addi-
tional assumptions each Si is a contraction mapping and so we can apply some standard
techniques to bound the Hausdorff dimension.

Lemma 3.1 Under the assumptions of Theorem 1.2, each Si is a contraction mapping.

Proof. Choose distinct points x1 = (x1, y1) and x2 = (x2, y2) in W . We need to show
that

d(Si(x1), Si(x2)) < d(x1,x2). (3)

The left-hand side is

d(Si(x1), Si(x2)) =

√[
∆x

b

]2
+

[
a∆y + φ

(
x1 + i

b

)
− φ

(
x2 + i

b

)]2
where ∆x = x1 − x2 and ∆y = y1 − y2. Since φ ∈ C1, applying the mean value theorem
there is a positive number c < 1 so that∣∣∣∣φ(x1 + i− 1

b

)
− φ

(
x2 + i− 1

b

) ∣∣∣∣ =
c

b
|∆x|.

Plugging this in and expanding, Equation (3) beomes√
1 + c2

b2
(∆x)2 + a2(∆y)2 +

2ac

b
∆x∆y <

√
(∆x)2 + (∆y)2. (4)

Applying the AM-GM inequality,∣∣∣∣2acb ∆x∆y

∣∣∣∣ ≤ ac

b

(
(∆x)2 + (∆y)2

)
. (5)

Squaring both sides of Equation (4), applying the triangle inequality and Equation (5),
and splitting the (∆x)2 and (∆y)2 terms, we see Equation (3) will follow if we show that

1 + c2

b2
+
ac

b
< 1 and a2 +

ac

b
< 1. (6)
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Noting that the left-hand side of both of these inequalities is an increasing function of c,
which is the value of the derivative of φ at some point, and |φ′| ≤ 1, we see c ≤ 1 which
leads to

2

b2
+
a

b
< 1 and a2 +

a

b
< 1. (7)

The first equation always holds, since |a| < 1 and b ∈ N > 1. The second equation
holds as that is precisely the assumption on the coefficients in the statement of the main
theorem. �

4 Proof of Theorem 1.2

Armed now with the knowledge that our the mappings Si are contraction mappings,
the strategy of our proof is to apply Lemma 2.2 to estimate the Hausdorff dimension.
Proof. From Lemma 2.2, it is clear that we need to estimate the contraction factors ui.
Following the lines of the proof of Lemma 3.1, choose distinct points x1 = (x1, y1) and
x2 = (x2, y2) ∈ W . Then d2(Si(x1), Si(x2)) can be written in matrix form as

(
∆x ∆y

)( 1+c2

b2
ac
b

ac
b

a2

)(
∆x
∆y

)
. (8)

Now view v = (∆x,∆y) as an element of R2: the question is how to extremize
√
vTAv,

where T denotes the transpose and A is the positive definite symmetric matrix(
1+c2

b2
ac
b

ac
b

a2

)
. (9)

The alert reader will note that this is not a matrix with constant coefficients, since c
is determined, via the Mean-Value Theorem, by x1 and x2 and so ultimately depends
upon x1 and x2. Our proof proceeds by fixing c, so that Equation (9) is regarded as
a fixed symmetric matrix A. It is a standard fact that a positive definite symmetric
matrix has positive real eigenvalues and that

√
vTAv ≤

√
λ‖v‖, where λ denotes the

largest eigenvalue of A. We then vary obtain an upper bound that is independent of c.
For two distinct points x1,x2 ∈ W there will be a corresponding c in the formula for
d(Si(x1), Si(x2)) and thus a corresponding matrix of the form (9). As our upper bound
is independent of c we can thus estimate the contraction factor of Si.

A straightforward computation shows the eigenvalues of this matrix are is

λ± =
1

2

(
1 + c2

b2
+ a2

)
± 1

2

√(
1 + c2

b2
+ a2

)2

− 4a2

b2
.

If there is only one eigenvalue,
(

1+c2

b2
+ a2

)2
− 4a2

b2
= 0 which implies that ab = 1±

√
−c2,

an immediate contradiction because ab is real. So, there cannot be one repeated eigenvalue
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and hence there must be two distinct eigenvalues. For our purposes, we need only the
larger eigenvalue to establish the upper bound. Hence we focus on

λ =
1

2

(
1 + c2

b2
+ a2

)
+

1

2

√(
1 + c2

b2
+ a2

)2

− 4a2

b2
.

Note this is an increasing function of c. As |φ′| ≤ 1, we set c = 1 to obtain

λmax =
1

2

[
2

b2
+ a2 +

√
4

b4
+ a4

]
.

This directly implies an upper bound for the contraction factor for each Si is

ui =
√
λmax := h 1 ≤ i ≤ b.

Hence, by Lemma 3.1 an upper bound on the Hausdorff dimension of the graph of w is
given by solving bhs = 1. Equivalently,

s = logh(1/b).

The result now follows. �
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