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Abstract - Broadly, fractals are sets that exhibit a repeating pattern at multiple scales. One
important fractal set is the Sierpinski Gasket (SG) which is made up of nested equilateral
triangles. A variation of the classic Sierpinski gasket is to create n-levels with the equilateral
triangles. Another variation is to stretch the points of intersection for the triangles in SG
into line segments of length 0 < α < 1/3. When one combines these variations, one arrives
at the stretched level-n Sierpinski gaskets (SSGn) which are the focus of this work. We give
an introduction to iterated function systems (IFS) and determine an IFS which generates
SSG3. We then describe how one can acquire the IFS for SSGn in general, and conclude
with a theorem which determines the Hausdorff dimension for SSGn.
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1 Introduction

Fractals are sets that exhibit a repeating pattern at multiple scales. A fractal can be
perfectly self-similar (in the sense defined in Section 1) or can simply be a set which
repeats a pattern at various scales, like the Weierstrass curve. The best way to understand
fractal sets is to analyze various examples. In this work, we will focus on fractal sets which
are self-similar or self-affine. Figure 1 shows three fractal sets, each of which exhibits self-
similarity at finer and finer scales. Should we have a way to zoom further and further
into these sets, we would find the same overall structure repeating infinitely.

Notice the remarkable relationship between the Barnsley fern and the fractal tree in
Figure 1, and the patterns we observe in nature. Nature produces many fractal patterns.
The reader is encouraged to find examples of fractal sets from within their own garden.
Understanding fractal sets can help develop tools to study the complex patterns created
by nature. This is one of the motivations behind the study of fractal geometry; see [3],
[4], [5].

Fractals like the Sierpinski gasket, SG, shown in Figure 1 have a robust structure and
serve as useful toy models to develop the theory of fractal geometry. This theory can then
be extended to the fractals that arise in nature. In this work we explore fractal sets that
arise from combining two variations on the classical Sierpinski gasket. The first variation
is the addition of levels to form the level-n Sierpinski gasket, SGn, seen in Figure 3.
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Figure 1: The Barnsley fern (left) [1], a fractal tree (center) [2] and the Sierpinski gasket
(right).

The second variation is a stretching of the points of intersection for the triangles in SG.
From a fractal geometric point of view, the Sierpinski gasket and the stretched Sierpinski
gasket are distinct. At the core of that distinction is the fact that the Sierpinski gasket
can be generated with contraction similarities (maps which shrink a space by the same
ratio in all directions) and the stretched Sierpinski gasket is generated with contraction
affine maps. Self-affine fractal sets are notoriously more difficult to work with, and the
stretched Sierpinski gasket has been the subject of multiple papers in recent years; see for
example [6], [7], [8].

By stretching the level-n Sierpinski gasket we get what is known as the stretched level-
n Sierpinski gasket, SSGn. The spaces SSGn have not been thoroughly studied by fractal
geometers. This work describes the way in which SSGn is built via an iterated function
system (IFS). In the process, we review important results about fractals arising from an
IFS. We finish with a theorem describing the fractal (Hausdorff) dimension of SSGn.

The remainder of this article is organized as follows:

• Section 2 introduces the concept of an iterated function system and the idea of
fractal dimension. This section contains many important theorems from fractal
geometry found in [9].

• Section 3 reviews the IFS that generates the stretched Sierpinski gasket.

• Section 4 builds upon the construction in section 3. This section explicitly constructs
the IFS for the level-3 stretched Sierpinski gasket and describes how the construction
extends for the level-n stretched Sierpinski gasket.

• In Section 5 we calculate the Hausdorff dimension of the stretched level-n Sierpinski
gasket. For n ∈ N with n ≥ 2 and α ∈ (0, 1

n+1
) we have the following:

dimH SSG
n =

ln
(n(n+1)

2

)
ln (n)− ln (1− (n− 1)α)

.
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Figure 2: Above we have a square and triangle (left) and apply a similarity (center) and a
generic contraction which is not a similarity (right). The “shadow” of the original square
and triangle are included as a reference for both the similarity and generic contraction.

2 A brief introduction to iterated function systems (IFS)

In this section we review some fundamental definitions and results about fractals generated
by iterated function systems.

Definition 2.1 A function f : D ⊆ RN → RN is a contraction if there exists a real
number c ∈ [0, 1) such that

|f(x)− f(y)| ≤ c|x− y|

for all x, y ∈ D. A contraction f : D ⊆ RN → RN which satisfies |f(x)− f(y)| = c|x− y|
for all x, y ∈ D, is called a similarity.

Let D ⊆ RN be a closed set. A finite collection of contractions fi : D → D where
i = 1, 2, . . . , k is called an iterated function system (IFS).

Let’s unpack the definitions above. Contraction maps and similarities are shrinking
maps! The inequality in the definition of a contraction tells us that contractions shrink
shapes and it is possible that the shrinking is greater in one direction than another.
Similarities on the other hand shrink by the same amount in all directions; see Figure 2.

Now how exactly does an IFS generate a fractal set? This is a key theorem from
fractal geometry which can be found in [9].

Theorem 2.2 Let g1, g2, . . . , gk be contractions on a closed set D ⊆ RN . There exists a
unique non-empty compact set X that satisfies

k⋃
i=1

gi(X) = X.

The set X is called the attractor of the IFS, {gi : i = 1, 2, . . . , k}.
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Figure 3: The Sierpinski gasket (SG) along with its level-3 (SG3), stretched (SSG), and
stretched level-3 (SSG3) variations.

Moreover, define F (A) =
k⋃
i=1

gi(A) and write F j(A) = F (F (F (· · ·F (A)))) for the j-th

application of F . Then we have

X =
∞⋂
j=1

F j(E)

for any compact set E such that gi(E) ⊆ E for each i = 1, 2, . . . , k.

The first part of the theorem above tells us that if we have an IFS, then there is exactly
one non-empty compact set X which is left fixed when we apply and union the images of
the contractions in the IFS. This is how we formalize the idea that X exhibits the same
pattern at multiple scales. Given that we have

X = g1(X) ∪ g2(X) ∪ · · · ∪ gk(X),

we see that X is made up of contracted (shrunken) copies of itself.
The second part of the theorem tells us how to visualize the construction of the set

X. For example, in the case of the Sierpinski gasket we have

SG = F (E) ∩ F 2(E) ∩ F 3(E) ∩ · · ·

where we choose the set E be the filled in equilateral triangle formed by the points

p1 = (0, 0) p2 =

(
1

2
,

√
3

2

)
p3 = (1, 0).

In this case, the set F (E) is the first stage in the construction of SG, the set F 2(E) is the
second stage, and so on. We get SG by intersecting all of these stages in the construction
process. For more on iterated function systems and fractal geometry in general see [9]
and [10]. One quality that makes fractals arising from an IFS particularly special to work
with is the understanding we have of the dimension of these fractals.

2.1 Hausdorff dimension

We may be accustom to thinking only of sets in dimensions 0, 1, 2, 3, etc., but there
are interesting fractal sets living in the dimensions in between! Fractal sets often have
non-integer dimensions.
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There are various ways to extend our usual ideas of dimension to ones that may yield
non-integer dimensions. Some notions such as the box-counting dimension or the set of
complex dimensions for a fractal are discussed in [9] and [11], for example.

We will focus on what is known as the Hausdorff dimension. To understand the
definition of the Hausdorff dimension of a set, we will first define the notion of Hausdorff
measure. Further details can be found in [9].

Definition 2.3 Let X ⊆ Rn. The diameter of a set X is defined by

diam(X) = sup{|x− y| : x, y ∈ X}.

Let s ≥ 0, and δ > 0. Define

Hs
δ(X) = inf

{
∞∑
i=1

diam(Ui)
s : X ⊆

∞⋃
i=1

Ui and diam(Ui) < δ

}
. (1)

As δ decreases, the infimum is taken over a smaller number of permissible covers of X so
Hs
δ(X) will increases. This means the limit

Hs(X) = lim
δ→0
Hs
δ(X)

is well defined. We call Hs(X) the s-dimensional Hausdorff measure of X. The
Hausdorff dimension of X is defined to be

dimH X = inf{s ≥ 0 : Hs(X) = 0}.

To calculate the Hausdorff dimension, we will make use of a theorem from [9] that
applies to sets arising from an IFS and which satisfy a certain separation property called
the open set condition. An IFS, {gi : i = 1, 2, . . . , k}, satisfies the open set condition if
there exists a non-empty bounded open set V such that

k⋃
i=1

gi(V ) ⊂ V

where this union is disjoint. The Sierpinski gasket and all of the variations on the Sier-
pinski gasket discussed in this work satisfy the open set condition with V taken to be
the interior of the triangle formed by the points p1, p2, and p3. We will therefore use the
following theorem when calculating the Hausdorff dimension of sets arising from an IFS
which satisfies the open set condition.

Theorem 2.4 Let gi be similarities on RN with contracting ratios ri (1 ≤ i ≤ k) and
which satisfy the open set condition. If X is the set satisfying

X =
k⋃
i=1

gi(X)
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then the Hausdorff dimension of X is dimH(X) = s where s is the real number satisfying

k∑
i=1

rsi = 1.

The Hausdorff dimension of the Sierpinski gasket for example is dimH(SG) = s =
log2(3) which solves the equation

3∑
i=1

(1/2)s = 1.

3 An IFS that generates SSG

We first acquaint ourselves with the IFS given in [7] that generates the stretched Sierpinski
gasket, SSG. Fix the following points in R2:

p1 = (0, 0) p2 =

(
1

2
,

√
3

2

)
p3 = (1, 0)

p4 =
p2 + p3

2
p5 =

p1 + p3
2

p6 =
p1 + p2

2
.

Next fix α ∈ (0, 1
3
) and for i = 1, 2, . . . , 6 define Gα,i : R2 → R2 by

Gα,i(x) = Ai(x− pi) + pi

where

A1 = A2 = A3 =
1− α

2
I =

1− α
2

(
1 0
0 1

)
and

A4 =
α

4

(
1 −

√
3

−
√

3 3

)
A5 = α

(
1 0
0 0

)
A6 =

α

4

(
1
√

3√
3 3

)
.

The matrices A1, A2, A3 are shrinking a shape by a factor of 1−α
2

in all directions. This
means Gα,1, Gα,2, Gα,3 are similarities, and in fact these functions correspond to (i.e. map
to) the triangles in SSG. The matrices A4, A5, and A6 will correspond to contractions
that map onto the stretched line segments in SSG. These matrices will not be similarities,
since they will collapse inputs onto a line segment. We now recall how one can project
onto a fixed vector.
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Figure 4: Stages 1, 2, and 3 in the construction of SSG3.

3.1 Vector projections

Definition 3.1 Let v ∈ RN be a fixed vector and s ∈ RN . The vector projection of s onto
a line parallel to v is given by

projv(s) =
s · v
‖v‖2

v

where s · v is the dot product of s and v, and ‖v‖ =
√
v21 + v22 + · · ·+ v2N is the usual

magnitude of the vector v = (v1, v2, . . . , vN).

Vector projections are how we arrive at the matrices A4, A5, and A6. These matrices
need to shrink a shape and project onto the stretched line segments in SSG. The matrix

A4 corresponds to projection onto the vector
(
−1

2
,
√
3
2

)
; the matrix A5 corresponds to

projection onto (1, 0); and A6 corresponds to projection onto
(

1
2
,
√
3
2

)
. We show below

the calculation of A6 and leave the others as an exercise for the reader.

Let s = (x, y) ∈ R2 and v =
(

1
2
,
√
3
2

)
. Note that ‖v‖ = 1. Then,

projv(s) =
s · v
‖v‖2

v

=

(
1

2
x+

√
3

2
y

)(
1

2
,

√
3

2

)
=

1

4

(
x+
√

3y,
√

3x+ 3y
)

=
1

4

(
1
√

3√
3 3

)(
x
y

)
.

This gives us the matrix 1
4

(
1
√

3√
3 3

)
which will project the vector s = (x, y) onto a

line parallel to v =
(

1
2
,
√
3
2

)
. We then scale this by α to get A6.
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3.2 Fixed points and contractions

Next let’s examine the significance of the points p1, p2, . . . p6. These are the fixed points
of the maps Gα,i, meaning that for each i = 1, 2, . . . , 6 we have

Gα,i(pi) = pi.

In fact, there is an important connection between contraction maps and fixed points.

Theorem 3.2 Contraction Mapping Principal (Fixed Point Theorem)
Let D ⊆ RN be a closed set. If f : D → D is a contraction map, then f has a unique
fixed point. In other words, there is exactly one x0 ∈ D which satisfies

f(x0) = x0.

The fixed points for the maps in an IFS help us shift the scaled and possibly pro-
jected vectors resulting from applying Ai into the correct positions. For example, in the
contraction

Gα,2(x) = A2(x− p2) + p2

the matrix A2 will scale the outer triangle formed by p1, p2 and p3 into a smaller triangle.
The point p2 will shift this scaled triangle into the correct position.

We can now recognize how each of the functions Gα,i corresponds to some component
of the stretched Sierpinski gasket. Namely, a triangle for Gα,1, Gα,2, and Gα,3 and line
segments for Gα,4, Gα,5, and Gα,6. Reviewing the IFS for the stretched Sierpinski gasket
gives us an idea of where to begin to build the IFS for SSGn. Each triangle and each
line segment in SSGn will correspond to a map in the IFS and hence a fixed point and
projection/scaling matrix.

4 An IFS for SSG3

Our next step is to construct the contractions that will generate SSGn. For simplicity,
we initially focus on n = 3. For each contraction we must determine a fixed point and a
projection/scaling matrix. We will need 6 maps for the triangles in SSG3 and 9 maps for
the line segments in SSG3; see Figures 4 and 5.

4.1 Fixed points for SSG3

We determine that the following points are fixed points for the maps in the IFS generating
the 6 triangles in the construction of SSG3:

s1 = p1 = (0, 0) s2 = p2 =

(
1

2
,

√
3

2

)
s3 = p3 = (1, 0)

s4 =
p1 + p2

2
s5 =

p2 + p3
2

s6 =
p1 + p3

2
.
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Figure 5: Stage 1 in the construction of SSG3 with the fixed points si.

The reader should note the renaming and shuffling of the points p4, p5, p6 to the points
s4, s5, s6. This is done for convenience moving forward. Calculating the fixed points for
the maps in the IFS which would correspond to the line segments in SSG3 is our next
task.

To generate the points s7 and s8 as seen in Figure 5, we scale the point s2 =
(

1
2
,
√
3
2

)
.

We arrived at

s7 =

(
1− 2α

3
+
α

2

)
s2 and s8 =

(
2− 4α

3
+

3α

2

)
s2

where α is again a real number that represents the length by which the level-3 Sierpinski
gasket is stretched. The scaling factors above will be denoted by

α1 =

(
1− 2α

3
+
α

2

)
and α2 =

(
2− 4α

3
+

3α

2

)
In a similar manner and using the symmetry of SSG3 we generate the following for

the points s9, s10, s11, and s12:

s9 = s2

(
−α2 0

0 α2

)
+ (1, 0)

s10 = s2

(
−α1 0

0 α1

)
+ (1, 0)

s11 = α2s3

s12 = α1s3

We now calculate the fixed points on the “inside” of SSG3, namely s13, s14, and s15.
Again we will make use of the symmetry of SSG3 as well as our knowledge of the points
s2 and s7.
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Figure 6: Components of the calculation to find s14 (left), s13 and s15 (right).

Calculation of s14
Note that the x-coordinate of s14 is the same as that of s2. It remains to calculate the
y-coordinate of s14. For this we note the right triangle in Figure 6 (left). Since the initial
outer triangle is an equilateral triangle, we know the angles within the outer triangle are
60◦. A trigonometry calculation yields

√
3(1 + α)

6

for the y-coordinate of s14. This gives us

s14 = s2

(
1 0
0 1+α

3

)
Calculation of s13 and s15
The y-coordinate for both s13 and s15 is the same as that of s7. We now calculate the
x-coordinate for both s13 and s15. Again a trigonometric calculation shows that the
x-coordinate for s13 is given by

2− α
12

+
1− 2α

3
+
α

2
=

2− α
4

.

This gives us

s13 = s2

(
2−α
2

0
0 2−α

6

)
For the x-coordinate of s15 we add an additional length of α

2
to the x-coordinate of

s13. This gives

s15 = s2

(
2+α
2

0
0 2−α

6

)
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4.2 Projection/scaling matrices for SSG3

Next we need a matrix that simply scales the outer triangle to the size of one of the small
triangles shown in Figure 5. We define matrices Xi where i = 1, 2, . . . , 6 by

Xi =
1− 2α

3
I.

Next we need matrices that scale and project onto the stretched line segments in SSG3.
First define

B =
α

4

(
1 −

√
3

−
√

3 3

)
C = α

(
1 0
0 0

)
D =

α

4

(
1
√

3√
3 3

)
.

The reader will recognize these as the projection and scaling matrices A4, A5, A6 from the
definition of SSG. Define matrices Xi for i = 7, 8, . . . 15 as follows:

X7 = X8 = X15 = D

X9 = X10 = X13 = B

X11 = X12 = X14 = C.

Note that these are grouped according to which line segments are parallel in SSG3. We
are now able to state the IFS that generates SSG3.

Definition 4.1 An IFS which generates SSG3 is given by

Hα,i(x) = Xi(x− si) + si

where si and Xi for i = 1, 2, . . . , 15 are as defined previously.

4.3 An IFS for SSGn

We can extend the construction above to SSGn for n ≥ 4. First note that there are

N =
n(n+ 1)

2

upright triangles in SSGn. Of these there are

(n− 2)(n− 3)

2

upright triangles in the interior of the set. First, we categorize the fixed points and scaling
matrices of SSGn into the following four groups:

Group 1 Boundary and α-independent. These are the fixed points associated to the triangles
along the edges of the set. There are

n(n+ 1)

2
− (n− 2)(n− 3)

2
= 3n− 3

of these triangles so our first 3n− 3 fixed points will be associated to these.
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Group 2 Interior and α-independent. These are the fixed points associated to the interior
upright triangles in SSGn. The next

(n− 2)(n− 3)

2

fixed points will be associated to these interior triangles.

Group 3 Boundary and α-dependent. These will correspond to the stretched line segments
along the edges of SSGn. There are

3(n− 1)

of these fixed points.

Group 4 Interior and α-dependent. These correspond to the stretched line segments that
appear in the interior of SSGn. We have

3

2
(n− 1)(n− 2)

such fixed point. All together SSGn contains n(2n− 1) fixed points.

Note that the fixed points from Groups 1 and 2 above are indeed the fixed points from
SGn. These are left unchanged by the stretching of the Sierpinski gasket. Each fixed
point in the first two groups corresponds to scaling matrix A where,

A =
1− (n− 1)α

n
I.

The fixed points in Group 3–Boundary and α-Dependent–can be acquired in the following

manner. For each n ≥ 4, we define the following set of constants
{
αk
}n−1
k=1

where,

αk = k

(
1− (n− 1)α

n

)
+ (2k − 1)

α

2
.

The reader may recognize that within SSGn, the upright triangles have side lengths
of 1−(n−1)α

n
and α

2
is half the length of the boundary line segments between the triangles.

Note that the index for the first point in group 3 will be i = N + 1. For fixed points
along the left edge of the outer triangle in SSGn, we use

si = α(i−N)s2

with scaling matrix D. The points along the right edge of the outer triangle for SSGn

will begin with index i = N + (n− 1) + 1. These can be acquired by

si = (−1, 1)si−(n−1) + s3.
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with scaling matrix B. Finally, for the points along the bottom edge of the outer triangle
we use,

si = αi−(N+2(n−1))s3

where the first index is i = N + 2(n − 1) + 1, the last fixed point at i = N + 3(n − 1),
and associated scaling matrix C. For simple notation, We set N ′ = N + 3(n− 1).

Lastly for the three point clusters, notice they lie along the midpoints of the downward
triangles of side length α. Moreover, the centers of the α triangles are the vertices that
appear in the interior of the regular level-n Sierpinski gasket. For SSGn we will have

m =
(n− 1)(n− 2)

2

centers. Call these c1, c2, . . . , cm. Each center will give a cluster of 3 fixed points for
SSGn. So the first center c1 corresponds to the fixed points with indices,

i = N ′ + 1, N ′ + 2, N ′ + 3

and center cp corresponds to indices,

i = N ′ + 3(p− 1) + 1, N ′ + 3(p− 1) + 2, N ′ + 3(p− 1) + 3

The fixed points can be obtained by the following formula:

si = cp +
α
√

3

6‖cp‖
R(i−(N ′+3(p−1)))c

T
p .

where Rk =

(
cos θk − sin θk
sin θk cos θk

)
for θ1 = 90◦ − arctan

(
ycp
xcp

)
, θ2 = 120◦ + θ1, θ3 =

240◦+ θ1. For the fixed points corresponding to θ1, θ2, θ3, the respective scaling matrices
are C, B, and D. At last we construct an IFS for SSGn.

Definition 4.2 An IFS which generates SSGn is given by

Hα,n,i(x) = Xi(x− si) + si

where si and Xi for i = 1, 2, . . . , n(2n− 1) are defined above.

Figure 7 illustrates the usefulness of the IFS given above. Starting with the fixed
points in the IFS, one can successively apply the maps in the IFS to generate additional
points on SSGn. This gives us a method to approximate sets like SSG4 and SSG5 seen
in Figure 7.

5 The Hausdorff dimension of SSGn

We now need one additional theorem regarding the Hausdorff dimension. This theorem
and its proof can be found in [9].
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Figure 7: The fixed points for SSG4 and SSG5 (left) are shown above along with a first
(center) and second (right) application of the IFS maps to the set of fixed points.

Theorem 5.1 The Hausdorff dimension is countably stable:

dimH

(⋃
i∈N

Ui

)
= sup

i∈N
dimH(Ui).

To make use of this theorem, we observe the following useful decomposition of SSGn.
Let F n be the unique compact set generated by the IFS which consists of only the sim-
ilarity maps in the IFS for SSGn. More specifically, F n is the union of all triangles in
SSGn. Next, let Jn be the union of all open (excluding end points) line segments which
form the stretched portion of SSGn. One can immediately extend a result in [7] (Lemma
2.1.1) to get that for any n ≥ 2, we have

SSGn = F n
⋃

Jn

where the union is disjoint. We now arrive at the Hausdorff dimension of SSGn.

Theorem 5.2 For n ≥ 2 and α ∈
(
0, 1

n+1

)
, the Hausdorff dimension of SSGn is

dimH SSG
n =

ln
(n(n+1)

2

)
ln (n)− ln (1− (n− 1)α)

.

Proof. By the countable stability of the Hausdorff dimension, we know

dimH SSG
n = sup

{
dimH F

n, dimH J
n
}
.
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Notice that F n is the unique attractor associated to an IFS with N = n(n+1)
2

similarities,

each of ratio r = 1−(n−1)α
n

. Then by Theorem 2.4, there exists a unique s > 0 such that,

N∑
i=1

rs =
N∑
i=1

(
1− (n− 1)α

n

)s
= 1

and s = dimH F
n. Solving for s gives

n(n+ 1)

2

(
1− (n− 1)α

n

)s
= 1 (2)

s · ln
(

1− (n− 1)α

n

)
= − ln

(
n(n+ 1)

2

)
(3)

s =
− ln

(
n(n+1)

2

)
ln
(

1−(n−1)α
n

) (4)

s =
ln
(
n(n+1)

2

)
ln (n)− ln (1− (n− 1)α)

. (5)

Note that any line segment has Hausdorff dimension 1. So for Jn, a countable union of
line segments, we have

dimH J
n = 1.

This now gives us

dimH SSG
n = max

 ln
(
n(n+1)

2

)
ln (n)− ln (1− (n− 1)α)

, 1

 .

Notice that n ≥ 2 and α ∈ (0, 1
n+1

) imply that

ln
(
n(n+1)

2

)
ln (n)− ln (1− (n− 1)α)

> 1.

Thus, for a fixed α ∈ (0, 1
n+1

) where n ≥ 2, the Hausdorff dimension of SSGn is given by

dimH SSG
n =

ln
(n(n+1)

2

)
ln (n)− ln (1− (n− 1)α)

.

�
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