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Abstract - Recent work by Forsg̊ard indicates that not every convex lattice polygon arises
as the characteristic polygon of an affine dimer or, equivalently, an admissible oriented line
arrangement on the torus in general position. We begin the classification of convex lattice
polygons arising as characteristic polygons of affine dimers. We present several general
constructions of new affine dimers from old, and an algorithm for finding affine dimers with
prescribed polygon.

With these tools we prove that all lattice triangles, generalised parallelograms, and
polygons of genus at most two admit an affine dimer.
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1 Introduction

A dimer model is an embedded bipartite graph on the torus T2 or, depending on the
application, any surface Σ. They were originally introduced in statistical mechanics to
model molecular interactions. In a simplified model, the thermodynamic properties of a
mixture of molecules can be calculated from a combinatorial factor that counts the number
of arrangements of molecules on a square lattice. If all molecules are dimers rather than
monomers or higher polymers, this amounts to counting the number of domino tilings of
the square lattice [12]. Thinking of the square lattice as an embedded graph, there is a
one-to-one correspondence between domino tilings of the lattice and perfect matchings
of the graph. The requirement that the graph is bipartite arises when one takes into
account the two possible charges of a particle. Finally, the torus T2 is a natural choice
of ambient space to account for translational symmetries such as that of a crystal. More
recent applications of dimer models can be found in algebraic and tropical geometry, as
well as in string theory (e.g., [16] and [14]).

To every dimer model on T2 one can associate a convex lattice polygon, called the
characteristic polygon, in at least two ways. The first way is as the Newton polygon of the
determinant of the Kasteleyn operator, a generalisation of the adjacency matrix where
the entries are weighted according to their meridional and longitudinal winding numbers
([3], Section 7). A variant of this operator was used by Kasteleyn in [12] to calculate the
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number of domino tilings of a rectangular square lattice as a Pfaffian. The second way
is as the convex hull of the values of the height function, which assigns a value in Z2 to
every perfect matching of the dimer model. These two notions turn out to be equivalent,
and it is natural to consider the inverse problem: For which convex lattice polygons does
there exist a dimer model with characteristic polygon as prescribed?

This question has been answered positively for all convex polygons if no further restric-
tions are imposed on the dimer model [8]. Futaki–Ueda and Ueda–Yamzaki realised that,
in some cases, the dimer model may be obtained from the faces of a certain hyperplane
arrangement on T2 ([7], [19], [20], as cited in [5]). In this case, the dimer is called affine.
However, Forsg̊ard exhibited a family of convex polygons which do not admit an affine
dimer ([5], Section 4).

The goal of this paper is to classify which convex polygons admit an affine dimer.
We present partial results consisting of a list of constructions to obtain new dimers from
old, an algorithm implemented in Java to verify whether a polygon admits an affine
dimer, and a positive answer for all convex lattice polygons that are triangles, “generalised
parallelograms”, or have at most two interior lattice points. These results are summarised
in Theorem A & B at the end of this section.

The results have the following application to algebraic and tropical geometry. Given
a complex curve C in (C∗)2, the coamoeba C ⊆ T2 is its image under the argument
projection (x, y) 7→ (arg(x), arg(y)) which naturally takes values on T2. The shell of the
coamoeba is a line arrangement H on T2 that is derived from the bivariate polynomial
defining C and satisfies C = C ∪ H (c.f. [11] and [5]). Then H divides T2 into several
tiles, and we say that a tile is full if it is fully contained in C . We say that the coamoeba
is represented by a dimer if we can embed a bipartite graph on T2 such that every vertex
is contained in the interior of a full tile, every tile contains at most one vertex, and the
edges correspond to shared corners between two tiles. If such a graph exists, it is by
definition a dimer, and automatically affine since it comes from the line arrangement H.

It is natural to ask which complex curves possess coamoebas that are represented by a
dimer. An important observation is that the Newton polygon of the defining polynomial
of the curve is the same as the characteristic polygon of the affine dimer representing
its coamoeba, if such a dimer exists. Therefore, a first obstruction is the non-existence
of an affine dimer with given characteristic polygon. We prove that this combinatorial
obstruction vanishes if the genus of the curve is at most two.

Our results also imply that all tropical curves of genus ≤ 2 can be lifted to an exact
Lagrangian submanifold of (C∗)2, as described in [9].

For simplicity, we work with homology polygons rather than characteristic polygons
from height functions. These concepts are equivalent, as outlined in the very readable
source [2].

1.1 Definitions

The n-dimensional torus Tn is the quotient Rn/Zn with quotient map q : Rn/Zn → Tn.
Note that q is a universal cover for Tn.
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Definition 1.1 A dimer is a bipartite multigraph G = (V◦ ⊔ V•, E) embedded on the
two-dimensional torus. (This means we allow multiple edges between two vertices).

Let Ĥ ⊆ Rn be an affine hyperplane, i.e., there exist a ∈ Rn, b ∈ R such that Ĥ =
{x ∈ Rn : ⟨a, x⟩ = b}. We call H := q(Ĥ) a hyperplane on the torus. If dim(Ĥ) = 1, we
call H a line (on the torus).

We now specialise to n = 2. A closed geodesic is a closed loop given by a line H ⊆ T2.
Once we fix a choice of orientation for a closed geodesic H, there are unique coprime
integers a, b ∈ Z such that the homology class of H is [H] = (a, b) ∈ H1(T2) ∼= Z2, i.e.,
(a, b) is the direction of H. We call (a, b) ∈ Z2 primitive if gcd(a, b) = 1. One can interpret
a and b as the winding numbers of H around the two directions of T2 ∼= T × T. Note,
however, that this choice of directions is by no means intrinsic to T2 and we will exploit
this symmetry on several occasions, using the action by automorphisms of GL2(Z) on T2.

Definition 1.2 An oriented line arrangement (on the 2-torus) is a finite set H of closed
geodesics on T2. The line arrangement is called

• in general position if no three lines intersect in a point, parallel lines are disjoint,
and not all lines are parallel;

• admissible if it is in general position and every oriented line segment is a boundary
component of a face whose edges are consistently oriented, i.e., all clockwise or all
counterclockwise. (A line segment of H is a segment of a line in H whose endpoints
are intersection points of H and whose interior contains no intersection points.)

Note that if a line arrangement is in general position then all faces are automatically
homeomorphic to a disk. Figure 1 gives an example of admissible and non-admissible line
arrangements. Note that these only differ by a translation of the upper horizontal line,
so both arrangements represent the same multiset of homology classes in H1(T2).

We briefly elaborate on the equivalence of admissible oriented line arrangements and
a certain class of dimers, called affine dimers. Given an admissible oriented line arrange-
ment, we obtain a dimer G = (V◦ ⊔ V•, E) as follows. Let V◦ and V• be the sets of faces
oriented clockwise and counterclockwise, respectively. For each intersection point of the
line arrangement, we add an edge to E connecting the two oriented faces meeting there.
The obtained graph is bipartite. To embed G in T2 we place a vertex in the interior of
each consistently oriented face. Each edge can then be realised as a union of two line
segments meeting at the shared intersection point of the two faces (see Figure 2).
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Figure 1: Examples of an admissible (left) and non-admissible (right) oriented line ar-
rangement. Consistently oriented faces are indicated with ⟲ and ⟳. The example to
the right is not admissible because, for example, the red line segment does not bound a
consistently oriented face.

Figure 2: The affine dimer G = (V◦⊔V•, E) obtained from the admissible line arrangement
in Figure 1. The edges of G are depicted in blue.

The converse construction is also possible: Given a dimer G = (V◦ ⊔ V•, E) such that

• the vertices of G are faces of a line arrangement in general position;

• each edge of G connects two faces along an intersection point of the line arrangement
such that the connected faces are opposite each other at that intersection point;
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• each intersection point of the line arrangement lies on exactly one edge of G and
each edge of G contains exactly one intersection point of the line arrangement,

then we may declare the faces in V◦ and V• to be oriented clockwise and counterclockwise,
respectively. The above conditions determine a well-defined choice of orientation for each
line. Thus, we obtain an admissible oriented line arrangement.

Definition 1.3 An affine dimer is a dimer satisfying the three conditions above. Figure
2 gives an example.

Thus, the notions of an affine dimer and an admissible oriented line arrangement are
equivalent, and we will use them interchangeably.

1.2 Problem Statement

Our leading question is the following:

Question 1.4 For which multisets of homology classes S = {h1, . . . , hn} ⊂ H1(T2) ∼= Z2

is there an admissible oriented line arrangement H = {H1, . . . , Hn} whose lines represent
S, i.e., such that [Hi] = hi for i = 1, . . . , n?

Figure 1 shows that a multiset of homology classes may be represented both by ad-
missible and non-admissible oriented line arrangements. Moreover, Forsg̊ard showed that
there is a family of multisets of homology classes indexed by N≥5, for which there are
no admissible oriented line arrangements representing them [5]. Thus, the problem is
non-trivial.

We already saw that the homology class of a closed geodesic on T2 is automatically
primitive, i.e., (a, b) ∈ Z2 with gcd(a, b) = 1. There is another immediate necessary
condition, which will allow us to reformulate the problem in terms of convex polygons on
the integer lattice.

Lemma 1.5 Let H = {H1, . . . , Hn} be an admissible oriented line arrangement repre-
senting the homology classes [Hi] = (ai, bi) ∈ Z2. Then

n∑
i=1

[Hi] = 0.

Proof. Each oriented line Hi is subdivided into several oriented line segments whose
endpoints are intersection points of the line arrangement. These oriented line segments
represent 1-chains on T2, so we may write Hi =

∑
segments e of Hi

e, where e ∈ C1(T2) is a
line segment of Hi. On the other hand, each segment belongs to exactly one consistently
oriented face. Thus, as chains

n∑
i=1

Hi =
n∑

i=1

( ∑
segments e of Hi

e

)
=

∑
segments e of H

e =
∑

oriented faces F

( ∑
edges e of F

e

)
.
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Passing to homology, we get
[∑

edges e of F e
]
= 0 for each oriented face F . Therefore∑n

i=1[Hi] = 0. □

Definition 1.6 A lattice polygon is a polygon in R2 whose vertices all lie in Z2.

Lemma 1.7 There is a bijection between the finite multisets of primitive elements of Z2

summing to zero and the convex lattice polygons on Z2 up to translation.

Proof. Given primitive elements hi = (ai, bi) ∈ Z2, i.e., gcd(ai, bi) = 1, we may order
them by their angle arg(hi) ∈ [0, 2π) with the x-axis. We define a convex lattice polygon
via the vertices v0 = (0, 0) and vi = vi−1 + hi. This is a closed polygon since

∑n
i=1 hi = 0

and convex since we ordered the hi.
Conversely, given a convex lattice polygon, orient the edges counterclockwise and

subdivide each edge so that it contains no integer lattice point in its interior. Viewing
each edge as a vector (a, b) ∈ Z2, this corresponds exactly to gcd(a, b) = 1, and thus
we obtain a primitive element hi = (ai, bi) ∈ Z2 for each primitive edge segment of the
polygon. Finally,

∑n
i=1 hi = 0 since polygons are closed. □

Definition 1.8 Let H be an admissible oriented line arrangement on T2. The homology
polygon P of H is the convex lattice polygon obtained from the homology classes of the
lines of H. Equivalently, we can talk about the homology polygon of an affine dimer.
Figure 3 shows an example.

Figure 3: Homology polygon of the admissible line arrangement in Figure 1 and
the affine dimer in Figure 2. The homology classes represented by the polygon are
(1, 0), (1, 0), (0, 1), (−1, 1), (−1,−2).

It is not a priori clear that the homology polygon of an affine dimer is well-defined, as
there might exist different admissible line arrangements with different homology classes
that give the same affine dimer G = (V◦ ⊔ V•, E) via the construction in Section 1.1.
However, as mentioned earlier, the homology polygon is equivalent to the characteristic
polygon (see [2]) which only depends on the data of the dimer and not the line arrangement.
Hence, the homology polygon of an affine dimer is well-defined. We only prefer to use
homology polygons in the problem statement because they are slightly easier to define.

Thus, we can reformulate our question:

Question 1.9 (Reformulation of Question 1.4) Which convex lattice polygons arise as the
homology polygon of an admissible oriented line arrangement? Or which convex lattice
polygons admit an affine dimer?
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1.2.1 Invariance under GL2(Z)

Finally, we note that GL2(Z) = {A ∈ Z2×2 : det(A) = ±1} acts on T2 by linear automor-
phisms which preserve admissible oriented line arrangements. Similarly, GL2(Z) acts on
the space of convex lattice polygons through its action on Z2, preserving area and the
number of lattice points in the interior and on the boundary. We call two lattice poly-
gons equivalent if they are related by an action of GL2(Z) and translation by a vector in
Z2. Thus, whether a convex lattice polygon admits an affine dimer only depends on its
equivalence class, and we arrive at our final formulation of the problem:

Question 1.10 (Reformulation of Question 1.9) Which equivalence classes of convex lat-
tice polygons arise as the homology polygon of an admissible oriented line arrangement?
Or which equivalence classes admit an affine dimer?

1.3 Outline of Results and Structure

Section 2 surveys some basic combinatorial properties of affine dimers and motivates the
name genus for the number of interior points of the homology polygon P , by connecting
it to the genus of a punctured compact orientable surface that is homotopy equivalent to
G.

In Section 3 we present three constructions of affine dimers. The “double everything”-
construction exhibits an affine dimer for every lattice polygon consisting of pairs of an-
tiparallel primitive side segments. The other two constructions (“lifting” and “adding an
antiparallel pair”) give new dimers from old:

Theorem A Let P be the homology polygon of an affine dimer.

(i) If B ∈ Z2×2 and det(B) ̸= 0 then B(P ) is also the homology polygon of an affine
dimer.

(ii) If h ∈ Z2 is a primitive side segment of P , then Ph is also the homology polygon of
an affine dimer, where Ph is obtained from P by adding the side segments h,−h.

Proof. (i) Proposition 3.1. (ii) Corollary 3.4 below. □
Section 4 summarises our algorithms, including a description of the moduli space

M∼= Tn of line arrangements representing a given homology polygon P .
Finally, Section 5 connects these results to finish the proof of Theorem B:

Theorem B Let P be a convex lattice polygon such that

(i) P is a triangle, or

(ii) the primitive side segments of P are pairs of antiparallel side segments, or

(iii) the number of interior lattice points of P is at most 2.

Then P admits an affine dimer.

Proof. (i) Proposition 5.1. (ii) Proposition 3.2. (iii) Propositions 5.2, 5.4, 5.5 below. □

the pump journal of undergraduate research 5 (2022), 24–51 30



2 Basic Combinatorics of Affine Dimers

In this section we develop some basic combinatorics of affine dimers.

Definition 2.1 Let G = (V◦ ⊔ V•, E) be an affine dimer with corresponding admissible
oriented line arrangement H = {H1, . . . , Hn}. Then we denote by

• n ... the number of lines,

• f◦ := |V◦|, f• := |V•| ... the number of faces of the line arrangement oriented
clockwise and anticlockwise, respectively,

• f× ... the number of faces that are inconsistently oriented,

• f = f◦ + f• + f× ... the number of faces of the line arrangement,

• v ... the total number of vertices of the line arrangement, i.e., intersection points
of lines in H,

• e◦, e• ... the number of line segments of H belonging to faces in V◦ or V•, respectively,

• e = e◦ + e• ... the number of line segments of the line arrangement H,

• g ... the genus of the dimer, which will be introduced in Section 2.2.

For example, the affine dimer in Figure 2 has n = 5, f◦ = f• = 4, f× = 5,
f = v = e/2 = 13, e◦ = e• = 13, and g = 1.

Proposition 2.2 (Basic counting)

(i) v − e+ f = 0 (ii) e◦ = e• (iii) f◦ = f• (iv) v = f = e/2

Proof. The proofs are as follows:

(i) Immediate since T2 has Euler characteristic zero and a line arrangement in general
position gives a CW decomposition of T2.

(ii) Each of the n closed geodesics consists alternately of edges counted by e◦ and e•.

(iii) This follows from the existence of a perfect matching for G (see Proposition 2.3).

(iv) By (i) it suffices to show v = f , for which we induct on the number of lines. Adding
a closed geodesic in general position adds as many faces as it adds vertices. To
verify the induction basis, assume we only have two closed geodesics which are not
parallel. As the homology class of a closed geodesic is a primitive element of Z2,
by the Euclidean algorithm we may use an action of SL2(Z) to assume that the
geodesics have homology classes (1, 0) and (c, d). By inspection, this configuration
has v = f = d.
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□

Proposition 2.3 An affine dimer G admits a perfect matching.

Proof. See [2] for a very readable discussion of the perfect matchings of a (not neces-
sarily affine) dimer, whose information is encoded in the characteristic polygon via height
functions. This is a special case.

Let ρ ∈ R2 \ {0} be a vector that does not indicate the (signed) direction of any line
in H. Then every consistently oriented face has a vertex at which the directions of the
two intersecting lines are immediately to the right and to the left of ρ. Now match each
clockwise face in V◦ to the counterclockwise face in V• adjacent to it via that vertex. This
defines a bijection V◦ → V• whose inverse V• → V◦ is constructed identically using the
same ρ. Thus, we have a matching.

This construction is illustrated in Figure 4. □

ρ

Figure 4: Matching (red) of the affine dimer in Figure 2 corresponding to ρ = (1, 1) (left).
As seen in the dimer’s homology polygon (right), any ρ with arg(ρ) ∈ (0, π/2) produces
the same matching.

Proposition 2.4 We have
1/3 ≤ f×/f ≤ 1/2

with f×/f = 1/2 if and only if every inconsistently oriented face is a 4-gon, and f×/f =
1/3 if and only if every consistently oriented face is a triangle.

Proof. For the upper bound we count the number of corners of inconsistently oriented
faces in two ways. On the one hand, this is 2v since each vertex is incident with two
inconsistently oriented faces. On the other hand, each inconsistently oriented face has an

the pump journal of undergraduate research 5 (2022), 24–51 32



even number of vertices, as otherwise G contains an odd cycle contradicting bipartiteness.
Thus,

2v ≥ 4f×.

By Proposition 2.2, v = f , so the upper bound follows with equality condition as desired.
For the lower bound we count the number of corners of consistently oriented faces in

two ways. Again, this is 2v. But every face has at least three edges, so

2v ≥ 3(f◦ + f•) = 3(f − f×).

The result follows using f = v again. □

2.1 Area of the Homology Polygon

The next result follows directly from Johansson’s and Forsg̊ard’s work in [6].

Theorem 2.5 Let P be the homology polygon of an affine dimer. Then

f× = 2Area(P ).

Proof sketch. The key step is to show that 2πArea(P ) is the sum of inner angles of
vertices of the line arrangement, counting one per vertex ([6], Lemma 3.2). Here, the
inner angle of two oriented intersecting lines is defined to be positive and lies between an
ingoing and an outgoing ray.

Thus, 2πArea(P ) is the sum of interior angles of all clockwise faces. This is exactly
half the sum of exterior angles of all inconsistently oriented faces, which is 2π per face.
Thus,

2πArea(P ) =
2πf×
2

.

□
For example, the affine dimer in Figure 4 has f× = 5 = 2Area(P ).

2.2 Genus of an Affine Dimer

We now describe two ways to think of an affine dimer (or equivalently of an admissible
oriented line arrangement) as a two-dimensional geometric shape.

Definition 2.6 The realisation of an affine dimer G is the set Ḡ :=
⋃

F∈V◦⊔V•
F̄ ⊆ T2,

i.e., the union of the closed oriented faces of the admissible oriented line arrangement H.
By definition, this depends on the choice of admissible line arrangement H corre-

sponding to G. However, many properties of Ḡ only depend on the homology polygon
P .

Proposition 2.7 The Euler characteristic of Ḡ is χ(Ḡ) = −f×.

the pump journal of undergraduate research 5 (2022), 24–51 33



Proof.
χ(Ḡ) = v − e+ (f◦ + f•) = v − e+ f − f× = χ(T2)− f× = −f×.

□
The embedding of G described in Section 1.1 is a deformation retract of Ḡ, so χ(G) =
χ(Ḡ).

Corollary 2.8 χ(G) = χ(Ḡ) = −2Area(P ).

We may consider Ḡ as the projection of a punctured smooth compact oriented surface
ˆ̄G embedded in R3. To this end we use the smooth standard embedding φ : T2 ↪→ R3 and
consider φ(Ḡ) ⊂ R3.

Definition 2.9 (The smooth orientable surface ˆ̄G ⊂ R3) Away from intersection points

of boundary components of φ(Ḡ) we identify ˆ̄G with φ(Ḡ). Near an intersection point,

we exploit the third dimension and let ˆ̄G twist locally by 180◦ like a helicoid as shown
in Figure 5, i.e., the normal vector changes smoothly from v to −v when traversing this
neighbourhood along an edge of G. These patches are glued together using bump functions

so that we obtain a smooth compact embedded surface ˆ̄G ⊂ R3.

⟳

⟲
φ(Ḡ) ⊂ φ(T2)

−→ ˆ̄G ⊂ R3

Figure 5: Twisting of ˆ̄G in R3 near an intersection point of the boundary components of

φ(Ḡ). ˆ̄G looks locally like the 180◦ segment of a helicoid near such points.

Proposition 2.10 ˆ̄G is orientable.

Proof. An orientation N : ˆ̄G → S2 is obtained as follows. By the Jordan–Brouwer
separation theorem, R3 \ φ(T2) consists of a bounded and an unbounded component.
Away from intersection points of boundary components of φ(Ḡ), let N(p) point into the
unbounded component at p if p ∈ φ(

⋃
V•) and into the bounded component if p ∈ φ(

⋃
V◦).

Near an intersection point, let N twist as prescribed by the local helicoid in Figure 5.

These local definitions of N glue together to form a well-defined orientation of ˆ̄G because
G = (V◦ ⊔ V•, E) is bipartite, so G does not contain a circuit of odd length. □

Proposition 2.11 Ḡ and ˆ̄G are homotopy equivalent. Therefore,

χ( ˆ̄G) = χ(Ḡ) = χ(G) = −f× = −2Area(P ).
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Proof. It suffices to show that φ(Ḡ) and ˆ̄G are homotopy equivalent. Away from
intersection points of boundary components of φ(Ḡ), both surfaces are identical. Near
an intersection point, the surfaces are equivalent by the homotopy that projects the right
hand side of Figure 5 onto the left hand side. These homotopies glue together compatibly

and hence φ(Ḡ) ≃ ˆ̄G. The equalities now follow from Proposition 2.7 and Corollary 2.8.
□

Lemma 2.12 (Pick’s formula) Let P be a simple lattice polygon (i.e., ∂P does not
self-intersect and has exactly one connected component). Then

Area(P ) = |P̊ ∩ Z2|+ 1

2

∣∣∂P ∩ Z2
∣∣− 1.

Proof. This is a well-known result with many different proofs available. E.g., one stan-
dard proof is via Euler’s formula [1], while a more non-standard proof uses the Weierstraß
℘-function [4]. □

Theorem 2.13 ˆ̄G is homeomorphic to the compact oriented surface Σg,n obtained by
removing n disjoint open discs from the compact oriented surface Σg of genus g without
boundary. Moreover, the genus g is the number of interior points of P , i.e.,

ˆ̄G ∼= Σg,n where g =
∣∣∣P̊ ∩ Z2

∣∣∣ .
Proof. The first part follows from the classification of surfaces and the fact that ˆ̄G has
n boundary components, one for each line in H. Adding a puncture to a surface (i.e.,
removing an open disc) decreases the Euler characteristic by one. Thus, by Proposition
2.11,

χ(Σg) = χ( ˆ̄G) + n = −2Area(P ) + n.

But n is the number of primitive side segments of P which equals the number of lattice
points on the boundary ∂P . Using χ(Σg) = 2− 2g we get

g = 1− χ(Σg)/2 = 1 + Area(P )−
∣∣∂P ∩ Z2

∣∣ /2.
Now the statement follows immediately from Lemma 2.12 (Pick’s formula). □

This explains our definition of the genus of a dimer:

Definition 2.14 The genus of an affine dimer G with homology polygon P is g :=∣∣∣P̊ ∩ Z2
∣∣∣, the number of lattice points in the interior of P . We also call this the genus of

the convex lattice polygon P .

This matches the relation between the genus of a tropical curve in R2 and the number
of interior points of its Newton polygon [15].

For example, Figure 6 shows an affine dimer G of genus zero. Since its line arrangement

has n = 3 lines, ˆ̄G ∼= Σ0,3 is the 3-punctured sphere also known as pair of pants. The

affine dimer in Figure 4 has genus one and ˆ̄G ∼= Σ1,5, the 5-punctured torus.
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⟳
⟲

Figure 6: An affine dimer of genus zero and its homology polygon.

It is shown in Section 5 that every convex lattice polygon of genus at most 2 is
the homology polygon of an affine dimer, answering Question 1.10 positively for these
polygons. Moreover, by Proposition 5.1, every lattice triangle admits an affine dimer.
Since for every g ∈ N there exists a lattice triangle of genus g, there exist affine dimers of
all genera.

3 Constructions of Affine Dimers

Next, we present three constructions of affine dimers and analyse the obtained homology
polygons.

3.1 Adding parallel edges

Proposition 3.1 Let H be an admissible oriented line arrangement with homology poly-
gon P . Let h ∈ Z2 be a primitive side segment of P . Then the convex lattice polygon Ph

obtained by adding the antiparallel side segments h and −h to P is the homology polygon
of an admissible oriented line arrangement. Thus, if P admits an affine dimer then so
does Ph.

H ⟳ ⟳
⟲ ⟲ −→

H

H1

H2

⟳ ⟳

⟳ ⟳
⟲ ⟲
⟲ ⟲

−→

Figure 7: Constructing HH from H (top) and Ph from P (bottom) for h = (1, 0). Only
the local picture near H is displayed, as everything else remains unchanged.
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Proof. Let H ∈ H with [H] = h. We construct a new admissible oriented line ar-
rangement HH with homology polygon Ph by adding two antiparallel lines H1, H2 with
[H1] = −h and [H2] = h. As depicted in Figure 7, we place them in the order H2, H1, H
and close enough to H so that no other intersection points of H lie between H2 and H.

If k is the number of intersection points on H then this construction adds k consis-
tently oriented faces to H locally near H, k/2 of each orientation. Away from H the
arrangement remains unchanged. Thus, we have obtained a new admissible arrangement
HH of homology polygon Ph, as required. □

3.2 Double everything

All lattice polygons consisting of pairwise antiparallel primitive side segments admit an
affine dimer.

Proposition 3.2 Let Σ = {h1, . . . , hn} ⊆ Z2 be a multiset of primitive vectors and
let PΣ be the convex lattice polygon consisting of the pairwise antiparallel side segments
±h1, . . . ,±hn. Then PΣ admits an affine dimer, i.e., PΣ is the homology polygon of an
admissible oriented line arrangement.

Additionally, the affine dimer may be taken to have f×/f = 1/2.

L

−→

⟳

⟳

⟳

⟳

⟲

⟲

⟲

⟲ HL

Σ −→ PΣ

Figure 8: Illustration of the “double everything”-construction.

Proof. Let L be any unoriented line arrangement in general position representing
the homology classes Σ on T2 (up to sign). We construct an admissible oriented line
arrangement HL as follows. First, add each line in L to HL. Then, for each H ∈ L, add a
line H− to HL that is parallel and close enough to H, such that no lines intersect between
H and H− and HL is in general position.
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Let V◦ be the parallelograms corresponding to intersection points of L and let V• be the
faces corresponding to the original faces of L. This gives an affine dimer G = (V◦⊔V•, E)
whose edges E encode the face-vertex incidence relations of L (see Figure 8). By the
discussion in Section 1.1 there is a choice of orientation for every line in HL such that
the faces in V◦ and V• are oriented clockwise and anticlockwise, respectively. This makes
HL an admissible oriented line arrangement. Moreover, each pair (H,H−) is oppositely
oriented, so the homology polygon of HL is PΣ, as required.

The inconsistently oriented faces of HL correspond to the line segments of L and are
all 4-gons. Thus, by Proposition 2.4, we have f×/f = 1/2. □

3.3 Lifting

In this section we use column and row vectors for elements of a vector space and its dual,
respectively.

Recall that q : R2 → T2 ∼= R2/Z2 is a universal cover of T2. Let H be an admissible
oriented line arrangement on T2. The preimage q−1(H) consists of all lifts of all the lines

in H. Moreover, each fundamental parallelogram on R2 spanned by
(
1 0

)T
,
(
0 1

)T
contains exactly one representative copy of H.

However, we may define a different fundamental parallelogram spanned by two ele-
ments of Z2 that gives a new universal cover of a torus on which it defines a new admissible
oriented line arrangement. This is equivalent to first lifting H to the universal cover R2

and then quotienting out by a general sublattice Λ ≤ Z2. See Figure 9 for an example.
Let Λ = ⟨α, β⟩ ≤ Z2 be a (non-degenerate) lattice and let T2

Λ be the torus associated
to the universal cover qΛ : R2 → R2/Λ := T2

Λ. Then H1(T2
Λ)
∼= Zα⊕Zβ. We want to find

the homology polygon of the admissible oriented line arrangement HΛ := qΛ(q
−1(H)) on

T2
Λ.
Note that since Λ ≤ Z2, this construction gives a well-defined regular cover q ◦ q−1

Λ :
T2

Λ → T2 of degree |covol(Λ)|, the volume of any fundamental parallelogram of Λ. This
cover maps qΛ(q

−1(H)) onto H so that HΛ is a regular cover of H.
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−→

⟳
⟲

−→ ⟳

⟳⟲

⟲

−→

Figure 9: The lifting construction corresponding to the lattice Λ = ⟨
(
1 0

)T
,
(
0 2

)T ⟩.
Top: change of fundamental parallelogram. Middle: from T2 to T2

Λ. Bottom: the new
homology polygon.

Proposition 3.3 Let P be the homology polygon of an admissible oriented line arrange-

ment H on T2 and let Λ = ⟨α, β⟩ ≤ Z2 be a (non-degenerate) lattice with α =

(
a
b

)
and

β =

(
c
d

)
. Let A =

(
a c
b d

)
and let PΛ be the homology polygon of HΛ on T2

Λ with respect

to the basis H1(T2
Λ)
∼= Zα⊕ Zβ. Then

PΛ = adj(A)(P ) =

(
d −c
−b a

)
(P ).
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−→
α

β

Figure 10: Illustration of the proof of Proposition 3.3 with α =
(
3 1

)T
and β =

(
1 2

)T
.

In this case φ(
(
3 1

)T
) =

(
5 0

)T
, confirming φ(α) = det(A)α ∈ H1(T2

Λ)
∼= Zα⊕ Zβ.

Proof. Fix an orientation of T2. For two transversal loops γ1 and γ2 on a torus let
ι(γ1, γ2) be their signed intersection number, which is invariant under homotopy. By
Poincaré duality we have an isomorphism

i : H1(T2)
∼=−→ H1(T2)

[γ] 7−→ ι([γ], ·)

and similarly iΛ : H1(T2
Λ)

∼=→ H1(T2
Λ). As discussed above, the map πΛ := q◦q−1

Λ : T2
Λ → T2

is a regular cover, restricting to a regular cover HΛ of H. Let φ := i−1
Λ ◦ π∗

Λ ◦ i.

H1(T2) H1(T2
Λ)

H1(T2) H1(T2
Λ)

φ

i∼= iΛ∼=
π∗
Λ

(1)

We shall show that φ([l]) = [π−1
Λ (l)] for every l ∈ Z1(T2). By Poincaré duality this is

equivalent to

ι(l, πΛ(g)) = ι(π−1
Λ (l), g) (2)

for all l ∈ Z1(T2) and g ∈ Z1(T2
Λ). Indeed, πΛ is orientation preserving and for l : S1 → T2

and g : S1 → T2
Λ we have l(s) = πΛ(g(t)) if and only if g(t) = l̂(s) for some lift l̂ of l along

πΛ, proving (2).
It remains to show that φ in (1) is given by the matrix adj(A). Working in the basis

of H1(Z2
Λ) dual to H1(Z2

Λ)
∼= Zα⊕ Zβ we obtain the desired result:

i
(
1
0

)
=

(
0 1

)
i

(
0
1

)
=

(
−1 0

)
 =⇒

π
∗
Λ ◦ i

(
1
0

)
=

(
b d

)
π∗
Λ ◦ i

(
0
1

)
=

(
−a −c

)
 =⇒

φ
(
1
0

)
=

(
d
−b

)
φ

(
0
1

)
=

(
−c
a

)

□

The map A 7→ adj(A) on {A ∈ Z2×2 : det(A) ̸= 0} is surjective. Thus:
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Corollary 3.4 If P is the homology polygon of an affine dimer and B ∈ Z2×2 with
det(B) ̸= 0, then B(P ) is also the homology polygon of an affine dimer.

We already knew this for B ∈ GL2(Z) because GL2(Z) acts by linear automorphisms
on T2. This corollary is a generalisation.

4 Affine Dimer Search Algorithm

The class of homology polygons obtained from the constructions in Section 3 is not too
big. Indeed, if P is a homology polygon obtained from Proposition 3.1 or Proposition 3.2
then P has a pair of antiparallel side segments. If P is obtained by lifting using a matrix
B ∈ Z2×2 with det(B) ̸= 0 as in Corollary 3.4, and if the non-primitive side segments of
P are p1, . . . , pm ∈ Z2, then det(B)| det(pi, pj) for all i, j. For this construction to deliver
a new GL2(Z) equivalence class of convex lattice polygons, we require det(B) ̸= {0,±1}.
Thus, the integers det(pi, pj) all have a common prime factor, which is a rare trait for a
convex lattice polygon P .

Therefore, we developed a computer program with GUI to manipulate line arrange-
ments on the torus and check whether a given convex lattice polygon admits an affine
dimer. This section summarises the algorithms used.

The programming was done primarily in Java, using the library JGraphT [10] for
standard graph algorithms and polymake [13] to work with cell decompositions of Rn.

4.1 Checking a single arrangement

Given a line arrangement H = {H1, . . . , Hn} in general position on T2 with
∑n

i=1[Hi] = 0,
the following algorithm determines whether it corresponds to an affine dimer.

1. Calculate all intersection points. For a pair (H1, H2) of lines, this is done by setting
[H1] = (1, 0) via an action of SL2(Z). This simplified configuration is dealt with by
inspection. The number of intersection points of H1 and H2 is | det([H1], [H2])|.

2. For each line H ∈ H, determine the order of the intersection points on H. Again,
this is done by first setting [H1] = (1, 0) via SL2(Z). Thus, we obtain the side
segment data of H.

3. For each intersection point of each side segment, determine the next side segment
at that point in clockwise and anticlockwise order. Thus, we obtain the face data
of H. Abstract this to a graph structure in which two faces are neighbours if and
only if they share a vertex.

4. Determine the number k of bipartite connected components of the obtained graph.

5. The obtained graph has exactly two connected components, which can be seen by
considering intersection numbers modulo 2. Hence, there are three cases:
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• If k = 2 then the homology polygon of H is a parallelogram by Lemma
4.1 below, which is already known to admit an affine dimer by the “double
everything”-construction of Proposition 3.2.

• If k = 1 then there is a choice of orientation for each line in H making the
arrangement admissible. A further check unveils whether this is compatible
with the given orientations. If not, a dimer for a different homology polygon
has been found. See Figure 12 for an example of why this is necessary.

• If k = 0 then the configuration is not admissible and this cannot be fixed by
re-orienting the lines.

This algorithm has linear time and space complexity O(f) by Proposition 2.2 (iv),
where f is the number of faces of H.

Lemma 4.1 If k = 2 in the above algorithm, then the homology polygon P of H is a
parallelogram.

H H

Figure 11: The two types of lines in the case k = 2.

Proof. Since the obtained graph is bipartite and k = 2, each line H ∈ H is of one of
the two types depicted in Figure 11. Thus, no two lines of the same type intersect, so all
lines of the same type are parallel (or antiparallel). Thus, there are at most 4 homology
classes and so P is a parallelogram. □

Figure 12: The admissible arrangement to the left appears in the moduli space of the red
(right) homology polygon and has k = 1 in the above algorithm. However, it represents
the green (middle) homology polygon.
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4.2 Moduli space of line arrangements

Checking whether a convex lattice polygon P admits an affine dimer is more difficult as
there are infinitely many line arrangements in general position realising P . However, only
finitely many of them represent different combinatorial configurations. We consider two
arrangements to be combinatorially the same if one of them can be obtained from the
other by continuously translating some lines without ever creating a triple intersection
point or two coinciding parallels. This notion is formalised by the moduli spaceM of line
arrangements.

Lemma 4.2 Let α ∈ Zn, c ∈ R, and Ĥ = {x ∈ Rn : ⟨x, α⟩ = c} be a hyperplane. Let
q : Rn → Tn be the quotient map and H = q(Ĥ). Then x + Zn ∈ H if and only if
⟨x, α⟩ ∈ c+ gcd(α)Z.

Proof. Z is a Euclidean domain, so the ideal equation (α1, . . . , αn) = gcd(α)Z holds. □
Therefore, given a primitive homology class α ∈ Z2, the set of lines realising this

homology class is parametrised uniquely by c ∈ R/Z ∼= T, since gcd(α) = 1. Therefore:

Definition 4.3 The moduli space M of line arrangements on T2 consisting of n lines
with prescribed homology class is topologically Tn. More precisely, if the primitive side
segments of P are h1, . . . , hn ∈ Z2 and αi is the clockwise rotation of hi by π/2 then the
correspondence is

(c1, . . . , cn) + Zn ∈ Tn ∼=M ←→
[
H = {H1, . . . , Hn}, [Hi] = hi,
Hi = {x+ Z2 : ⟨x, αi⟩ ∈ ci + Z}

]
.

Let C ⊂ M be the locus where H is not in general position. This happens either
when three or more lines intersect in a point or when two (anti)parallel lines have the
same parameter.

For each pair {hi, hj} with i ̸= j and hi ∥ hj, Hi and Hj coincide if and only if ci = cj
on T. This happens if and only if (c1, . . . , cn) lies on the hyperplane Ci,j : Xi − Xj = 0
onM.

For each triple {hi, hj, hk} of pairwise non-(anti)parallel homology classes, the lines
Hi, Hj, Hk intersect in a common point x ∈ T2 if and only if

⟨x, αi⟩ ≡ ci, ⟨x, αj⟩ ≡ cj, and ⟨x, αk⟩ ≡ ck mod Z.

This holds for some x if and only if

(ci, cj, ck) ∈ Im(A) + Z3 for the 3× 2 integer matrix A =

← αi →
← αj →
← αk →

 =:

 ↑ ↑
eijk fijk
↓ ↓

 ,

or equivalently ⟨(ci, cj, ck), eijk ∧ fijk⟩ ∈ gcd(eijk ∧ fijk)Z by Lemma 4.2. This defines a
hyperplane Di,j,k ⊂ Tn ∼= M. Thus, the locus C ⊂ M of degenerate arrangements is
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given by the hyperplane arrangement

C :=

 ⋃
hi∥hj

i ̸=j

Ci,j

 ∪
 ⋃

hi,hj ,hkpairwise
non-(anti)parallel

Di,j,k

 ⊂M.

To determine if P admits an affine dimer, one therefore needs to apply the algorithm
of the previous subsection to one arrangement (c1, . . . , cn) of each connected component
of the complementM\C. It remains to enumerate the connected components ofM\C.

Note also that the coordinates of eijk ∧ fijk in the definition of Di,j,k are of the form
det(hi1 , hi2). Thus, the structure C ⊂ M only depends on the GL2(Z) equivalence class
the homology polygon P .

4.2.1 Cell decomposition approach

One way of enumerating the components ofM\ C is as follows.

1. Lift each constituting hyperplane H = Di,j,k or Ci,j of C to several hyperplanes
{H1, . . . , Hl} in Rn such that H = [0, 1]n ∩ {H1, . . . , Hl}

/
Zn. (For H = Ci,j we

have l = 1. For H = Di,j,k with normal vector ν := eijk ∧ fijk we have l ≤
1 +
√
3 ∥ν∥ /gcd(ν).) Thus, we obtain a (finite) hyperplane arrangement Ĉ ⊆ Rn

such that q(Ĉ) = C.

2. Use a cell decomposition algorithm to find the connected components of Rn \ Ĉ.

3. Pick one point in each cell and check if the corresponding configuration is admissible.

We implemented this using polymake [13], but the resulting algorithm was not efficient
enough to deliver results for some lattice polygons P of interest (such as the conjectured
counterexamples of Forsg̊ard for k = 3, 4 ([5], Section 4)). This is no surprise since C
consists of O(n3) hyperplanes, each lifting to an arbitrarily large number of hyperplanes
in Ĉ. For a hyperplane arrangement in general position on Rn the number of components
of the complement is a degree n polynomial in the number of hyperplanes. Thus, the
number of cells could be O(n3n) or even higher, depending on the number of lifts when
constructing Ĉ from C.

It might be possible to optimize this using properties of Tn or the fact that we are
only working on [0, 1]n.

4.2.2 Mesh approach

The cell decomposition algorithm of polymake gives us a proper cell decomposition,
whereas we only really need one point in each cell ofM\C. There is a smallest constant
m(C) ∈ N>0 such that every component of M \ C contains a point of q (m(C)−1Zn).
Thus, we are able to finish by checking O (m(C)n) configurations and without calculating
any cell decompositions.
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However, even when C just consists of two lines on T2, there are configurations of
arbitrarily large m(C). E.g., take lines of homology class (1, 0) and (1, l) with l → ∞.
This configuration has l faces, so m(C) ≥ l. Note also that this cannot be cured by
applying a smart choice of A ∈ GL2(Z) to C since the number of faces is invariant.

4.2.3 Reducing dimension by two

In both approaches described above, we may reduce the dimension by two by restricting
our attention to the subtorus Tn−2 ⊂ M with c1 ≡ c2 ≡ 0 mod Z. This corresponds
to translating all arrangements so that H1, H2 intersect at the bottom left corner of the
fundamental parallelogram, where h1 ̸∥ h2 without loss of generality.

4.3 Randomized search & admissible volume

We may choose random vectors (c1, . . . , cn) ∈ M and check each configuration until we
find an affine dimer, or stop after a certain number of trials. This approach led to the
discovery of many non-trivial affine dimers of genus 1 and 2 presented in Section 5.

Definition 4.4 Let A ⊂ M \ C be the locus of admissible oriented line arrangements.
The admissible volume of P is vol(A).

Note that vol(A) only depends on the GL2(Z) equivalence class of the homology
polygon P , since C is GL2(Z) invariant. Thus, it makes sense to talk about the admissible
volume of an GL2(Z) equivalence class of convex lattice polygons.

Using this randomized approach it is possible to estimate the admissible volume of P .
For some homology polygons in Section 5 we had vol(A) < 0.01, making it highly unlikely
that we could have found their affine dimers by hand, and justifying our computational
approach.

Furthermore, if Tn−2 ⊂ M denotes the subtorus with c1 ≡ c2 ≡ 0 mod Z, then
volTn(A) = volTn−2(A∩Tn−2). This is because the (n−2)-dimensional fibers are isomorphic
via global translation of the arrangements, and translation is an isometry on flat tori.
Thus, we may speed up the estimation of vol(A) (and thus our search for affine dimers)
by reducing the dimension by two.

Finding bounds for vol(A) in terms of P might allow us to answer Question 1.10 for
bigger classes of polygons. For example, we have the following result for parallelograms,
which might be generalised in future.

Proposition 4.5 Let P be an a× b lattice parallelogram with n = 2a+ 2b primitive side
segments. Then

vol(A) = 4

(
2a
a

)−1(
2b
b

)−1

.

Proof. We say that P has 2a horizontal and 2b vertical side segments, a (respectively b) of
each orientation. An arrangement (c1, . . . , cn) ∈M\C is admissible if and only if both the

vertical lines and the horizontal lines have alternating orientations. There are

(
2a
a

)
orders
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of orientations for the horizontal lines, exactly two of which are alternating (and similarly
for the vertical lines). The result follows since all orderings of horizontal (respectively
vertical) lines are equally likely and from independence of vertical and horizontal lines. □

5 Triangles and Genus ≤ 2

We now apply the constructions of Section 3 and the algorithms of Section 4 to exhibit
various families of convex lattice polygons that admit an affine dimer. We also record some
estimates of their admissible volumes (see Section 4.3), indicating how hard it would be
to find their affine dimers by hand without our constructions and algorithms.

5.1 Triangles

We begin with an application of the lifting construction in Section 3.3.

Proposition 5.1 Let P be a lattice triangle (possibly with more than three primitive side
segments). Then P admits an affine dimer. Moreover, it admits an affine dimer that is
lifted from the one in Figure 6.

Proof. Let the triangle P be spanned by the vectors (a, b), (c, d) ∈ Z2, not necessar-
ily primitive as we allow more than three primitive side segments. Then an admissible
oriented line configuration with homology polygon P is obtained by applying the matrix

B =

(
a c
b d

)
to the triangle spanned by (1, 0) and (0, 1) using Corollary 3.4. □

5.2 Genus Zero

a b

c

Figure 13: The three families of equivalence classes of convex lattice polygons with no
interior lattice points, where a, b, c are positive integers [18].

Proposition 5.2 Let P be a convex lattice polygon with no interior lattice points. Then
P admits an affine dimer.

Proof. By [18] the equivalence classes of convex lattice polygons with no interior lattice
points are those displayed in Figure 13. By Proposition 5.1, the triangles all admit an
affine dimer.

For the trapezoid given by b, c ∈ Z>0, there are two cases. If b = c then P consists
of pairwise antiparallel edges, so admits an affine dimer by Proposition 3.2. If b ̸= c and
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without loss of generality b > c then P is obtained from the triangle in Figure 13 with
a = c by adding b − c pairs of antiparallel edges parallel to (1, 0). Thus, P admits an
affine dimer by Proposition 5.1 and Proposition 3.1. □

Even for the genus 0 triangles the admissible volume decays quickly:

Proposition 5.3 Let P be the a × 1 triangle in Figure 13. The admissible volume of
A ⊂M\ C is

vol(A) = a!/aa.

Proof. Let H1, . . . , Ha be the lines of homology class (1, 0) and let V and S be the lines
of homology class (0,−1) and (−a, 1), respectively. Then S subdivides V into a segments
s1, . . . , sa of equal length. Since the arrangement is in general position, there is a function
f : {1, . . . , a} → {1, . . . , a} such that Hi intersects V in the segment sf(i). By inspection,
the arrangement is admissible if and only if f is injective. Since every f is equally likely
for (c1, . . . , ca+2) ∈M \ C chosen uniformly at random, we have

vol(A) = P(f is injective) = a!/aa.

□

5.3 Genus One

0.21% 0.62% 5.66% 50.09% 100%

7.92% 8.845% 3.26% 0.935%100% 0.111...%

Figure 14: Equivalence class representatives of convex lattice polygons with one interior
point that are triangles (top), consist of pairwise antiparallel side segments (bottom left),
or have a pair of antiparallel side segments which are parallel to at least one other side
segment (bottom right). The blue numbers are estimates (≥ 2·104 trials) of the admissible
volume of the polygon, indicating how hard it would be to find affine dimers by hand.
The two bottom left numbers are exact by Proposition 4.5.

Proposition 5.4 Let P be a convex lattice polygon with exactly one interior lattice point.
Then P admits an affine dimer.
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Proof. There are 16 equivalence classes of convex lattice polygons with exactly one
interior point [17], [18]. As seen in Figure 14, four of them are triangles, which admit
an affine dimer by Proposition 5.1. Three of them consist of pairwise antiparallel side
segments, so admit an affine dimer by Proposition 3.2. Another three of them are obtained
by adding a pair of antiparallel side segments (±1, 0) to convex lattice polygons containing
(1, 0) as a side segment which are already known to be dimers since they have no interior
points. These admit an affine dimer by Proposition 3.1.

There are five equivalence classes left whose affine dimers are displayed in Figure 15
& 16. □

33.232% 11.125% 16.39%

Figure 15: The five remaining equivalence classes of convex lattice polygons with one
interior lattice point and affine dimers for them (continued in Figure 16). The blue
numbers are estimates (≥ 2 · 104 trials) of the admissible volume.
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4.035% 0.89%

Figure 16: Continuation of Figure 15.

5.4 Genus Two

The same holds for two interior points.

Proposition 5.5 Let P be a convex lattice polygon with exactly two interior lattice points.
Then P admits an affine dimer.

Proof. A classification up to equivalence of convex lattice polygons with two interior
lattice points is provided by [21].

There are five classes of triangles, all of which admit an affine dimer by Proposition
5.1.

There are 19 classes of quadrilaterals. Three of them are parallelograms and thus
admit an affine dimer by Proposition 3.1. Six of them are obtained by adding a pair of
antiparallel edges parallel to an existing edge to a convex lattice polygon of genus 0 or
1, and therefore admit an affine dimer by Propositions 5.2, 5.4, and 3.1. The other 10
classes of quadrilaterals were checked manually to admit an affine dimer (see below).

Similarly, all sixteen classes of pentagons and five classes of hexagons admit an affine
dimer (see Figure 17 for an example). There are no convex lattice n-gons with two interior
lattice points and n > 6. The 19 classes that required computer-aided verification can be
found online at https://jeffhicks.net/files/DHolmesSupplemental.pdf. □

This completes the proof of Theorem B.
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1.148%

Figure 17: The only genus 2 hexagon whose dimer cannot be constructed from a lower
genus dimer using the constructions of Section 3. The blue number is an estimate (105

trials) of the admissible volume.
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[6] J. Forsg̊ard, P. Johansson, Coamoebas and line arrangements in dimension two, Math. Z., 278
(2014), 25–38.

[7] M. Futaki and K. Ueda, Dimer models and homological mirror symmetry for triangles, 2010, available
online at the URL: https://arxiv.org/abs/1004.3620

the pump journal of undergraduate research 5 (2022), 24–51 50

https://web.maths.unsw.edu.au/~danielch/thesis/Chan_timothy.pdf
https://arxiv.org/abs/1004.3620


[8] D.R. Gulotta, Properly ordered dimers, R-charges, and an efficient inverse algorithm, J. High Energy
Phys., 2008 (2008), article 14.

[9] J. Hicks, Tropical Lagrangians in toric del-Pezzo surfaces, Sel. Math. New Ser., 27 (2021), article 3.

[10] JGraphT. A Java library of graph theory data structures and algorithms, available online at the
URL: https://jgrapht.org/

[11] P. Johansson, The argument cycle and the coamoeba, Complex Var. Elliptic Equ., 58 (2013), 373–
384.

[12] P.W. Kasteleyn, The statistics of dimers on a lattice: I. The number of dimer arrangements on a
quadratic lattice, Physica, 27 (1961), 1209–1225.

[13] L. Kastner, M. Panizzut, Hyperplane Arrangements in polymake, in Math. Software – ICMS 2020,
Springer, 2020, 232–240.

[14] R. Kenyon, A. Okounkov, S. Sheffield, Dimers and amoebae, Ann. of Math. (2), 163 (2006), 1019–
1056.

[15] G. Mikhalkin, Enumerative Tropical Algebraic Geometry in R2, J. Amer. Math. Soc., 18 (2005),
313–377.

[16] A. Okounkov, N. Reshetikhin, C. Vafa, Quantum Calabi-Yau and classical crystals, Progr. Math.,
244 (2006), 597–618.

[17] B. Poonen, F. Rodriguez-Villegas, Lattice Polygons and the Number 12, Amer. Math. Monthly, 107
(2000), 238–250.

[18] S. Rabinowitz, A census of convex lattice polygons with at most one interior lattice point, Ars
Combin., 28 (1989), 83–96.

[19] K. Ueda, M. Yamazaki, A Note on Dimer Models and McKay Quivers, Commun. Math. Phys., 301
(2011), 723–747.

[20] K. Ueda, M. Yamazaki, Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces,
J. Reine Angew. Math., 680 (2013), 1–22.

[21] X. Wei, R. Ding, Lattice polygons with two interior lattice points, Math. Notes, 91 (2012), 868–877.

Daniel Holmes
DPMMS, University of Cambridge
Wilberforce Road
Cambridge, CB3 0WB, United Kingdom
E-mail: dh604@cam.ac.uk

Received: October 7, 2021 Accepted: January 5, 2022
Communicated by Matthias Beck

the pump journal of undergraduate research 5 (2022), 24–51 51

https://jgrapht.org/

	Introduction
	Definitions
	Problem Statement
	Invariance under GL2(Z)

	Outline of Results and Structure

	Basic Combinatorics of Affine Dimers
	Area of the Homology Polygon
	Genus of an Affine Dimer

	Constructions of Affine Dimers
	Adding parallel edges
	Double everything
	Lifting

	Affine Dimer Search Algorithm
	Checking a single arrangement
	Moduli space of line arrangements
	Cell decomposition approach
	Mesh approach
	Reducing dimension by two

	Randomized search & admissible volume

	Triangles and Genus 2
	Triangles
	Genus Zero
	Genus One
	Genus Two


