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Abstract - In the field of knot theory, knot invariants are properties preserved across all
embeddings and projections of the same knot. Fox n-coloring is a classical knot invariant
which associates to each knot projection a system of linear equations. We generalize Fox’s
n-coloring by using two, not necessarily distinct, polynomials over a field F, which we say
form a (g, f)F coloring. We introduce a sufficient condition, called strong, for a pair of
polynomials to form a (g, f)F coloring. We confirm a family of pairs of linear polynomials
each of which form a (g, f)F coloring. We prove that there are no strong pairs containing an
irreducible quadratic polynomial over a field F not of characteristic two. Furthermore, we
find that the cubic 2x3 − y3 − z3 forms a (g, f)F3n

coloring and produce a method to find
similar polynomials with unbounded degree.
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1 Introduction

A knot is a simple closed curve in R3. Two knots K1 and K2 are considered equivalent if
there exists an orientation preserving homeomorphism p : R3 → R3 such that p(K1) = K2.
Intuitively, this means that two knots are equivalent if one can manipulate one knot
through R3, without intersecting itself, onto the other knot. We will focus on oriented
knots, which are defined by specifying the direction a given knot can be traversed (signified
by arrows in the knot projection).

One of the main problems in knot theory is determining if two knots are equivalent.
One strategy to show that a pair of knots are not equivalent is to use invariants, or
properties that are the same for every embedding of equivalent knots. One tool that
many invariants use is the projection of a knot into the xy-plane. At any crossing,
we can draw our projection so that we skip a neighborhood about the point with the
lesser z coordinate, creating the illusion that one strand is passing over another. Formal
projections as such, together with these gaps, are called knot projections, as depicted in
Figure 1.

These gaps create strands in the projection, which are the connected components of
the knot projection. At any crossing, we then have an overstrand, relative to the point
with the greater z coordinate, and two understrands, local to the point with the lesser z
coordinate.
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Figure 1: An example of a knot projection of the 61 knot.

1.1 Reidemeister Moves

One classical approach to determining if two knots are the same is using Reidemeister
moves for knot projections [2]. Reidemeister moves are a type of modification to a knot
projection, producing a distinct projection of the same knot. There are three classes of
Reidemeister moves. There are variations within the three types of Reidemeister moves,
but representatives of each of the three types are shown in Figure 2. We’ll describe these
in an informal way, which will suffice for our purposes. The first move has the effect of
removing (or adding) a twist that occurs in a single knot strand. The second move has the
effect of removing (or adding) a pair of crossings by allowing one strand to pass over/under
another. The third Reidemeister move preserves the number of crossings, allowing one
strand to pass over or under a crossing.

Figure 2: The three Reidemeister moves.

Reidemeister’s main theorem regarding these moves is that if two knots K1 and K2 are
equivalent if and only if one can use planar isotopies and a finite sequence of Reidemeister
moves to obtain a projection of K1 from a projection of K2.

Reidemeister’s theorem can be extended to oriented knots. However, there are quite
a large number of these oriented Reidemeister moves. As discussed by Polyak [3], there
are 4 oriented Reidemeister 1 moves, 4 oriented Reidemeister 2 moves, and 8 oriented
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Reidemeister 3 moves. Polyak [3] shows, however, that the set of oriented Reidemeister
moves Ω1a,Ω1b,Ω2a,Ω3a, shown in Figure 3, is a minimal generating set of oriented
Reidemeister moves. That is to say, two oriented knots are equivalent if and only if one
can use planar isotopies (continuous deformations of the plane of projection) and a finite
sequence of Ω1a,Ω1b,Ω2a,Ω3a moves to obtain a projection of K1 from a projection of
K2, and there is no smaller set of oriented Reidemeister moves with this property.

Figure 3: A minimal generating set of oriented Reidemeister moves.

1.2 Tricolorability and Generalizations

One classic knot invariant is tricolorability. We say a knot is tricolorable if one can assign
to each strand of the knot projection one of three colors such that at each crossing all
strands are either the same color, or all different (with at least two colors being used).
One can show that this is equivalent to assigning each strand a 0, 1, or 2 and checking if
at each crossing the equation

2x− y − z ≡ 0 (mod 3)

holds, where x is the label on the overstrand and y and z are the labels on the two
understrands. Tricolorability can be generalized to picking labels from the set of integers
{0, 1, ..., n − 1} and considering the equation 2x − y − z ≡ 0 (mod n) at each crossing.
Such a labelling is called a Fox n-coloring [1]. If such a solution exists for a given knot
projection, we say that the knot is n-colorable. It is a routine check that n-colorability is
a knot invariant for all n ≥ 3.

While the Fox n-coloring can differentiate some knots, there are many that it cannot.
We examine alternative labeling methods than those which arise from Fox’s work. One
property of the Fox n-coloring is that the two understrands at a given crossing are not
distinguished. If one adds an orientation to the knot, then there is a distinction between
incoming and outgoing understrands at each crossing. Using this orientation, we can also
distinguish between two types of crossings, which we will refer to as right-handed and
left-handed crossings. Figure 4 depicts a right-hand crossing and a left-hand crossing.

Instead of using the same labeling equation at both of these crossings, we can instead
consider using two different equations. This leads to the following definition:
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Figure 4: The two types of crossings possible in a knot projection.

Definition 1 For polynomials f, g ∈ Zn[x, y, z], a projection of an oriented knot is
(g,f)n colorable if each strand in a knot projection can be labeled with an integer from
0 to n− 1 which satisfies the rules:

1) At least two different integers are used in the overall knot.

2) f(x, y, z) ≡ 0 (mod n) at right-handed crossings and g(x, y, z) ≡ 0 (mod n) at left-
handed crossings, where x is the label of the overstrand, y is the label of the incoming
understrand, and z is the label of the outgoing understrand (as shown in Figure 4).

We call such a coloring a (g,f)n coloring.

We can further generalize this definition by considering different rings from which to
take labels. For the Fox n-coloring, labels were taken to be elements of Zn. We now
consider taking polynomials over other rings, most of which we will choose to be fields.

Definition 2 Let R be a ring with |R| ≥ 2 and let f, g ∈ R[x, y, z] be polynomials with
coefficients in R. Then a projection of an oriented knot is (g,f)R colorable if each
strand in the knot projection can be labeled with an element of R such that:

1) At least two distinct elements of R are used in the coloring.

2) f(x, y, z) = 0 at right-handed crossings and g(x, y, z) = 0 at left-handed crossings,
where x is the label of the overstrand, y is the label of the incoming understrand,
and z is the label of the outgoing understrand.

We call such a coloring a (g,f)R coloring.

In Section 2, we derive a set of algebraic properties on pairs of polynomials from the
Reidemeister moves and define a corresponding family of polynomial pairs called strong
polynomials. We conclude this section with Theorem 9 by showing that colorability by
strong pairs of polynomials is a knot invariant. In Section 3 we classify strong pairs of
linear polynomials in Theorem 10. In Section 4, we show that there are no strong pairs
of irreducible polynomials where either polynomial is quadratic. Finally, in Section 5 we
describe a method of obtaining a pair of strong polynomials from another, forming an
equivalent invariant, and use this to give strong pairs of polynomials with arbitrarily high
degree.
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2 Consequences of the Reidemeister Moves

We now consider a set of sufficient conditions for a (g, f)F coloring to be invariant under
the Reidemeister moves. These will then be sufficient conditions for the pair (g, f)F to be a
knot invariant. These conditions manifest as algebraic statements about the polynomials
f and g, as well as their roots.

Definition 3 Let F be a field and f, g ∈ F[x, y, z] be polynomials over F. Then we define
the following properties for the pair (f, g):

• Property Ω1a1: ∀α ∈ F, f(α, α, α) = 0

• Property Ω1a2: ∀α, β ∈ F, f(α, α, β) = 0 implies α = β

• Property Ω1b2:
1 ∀α, β ∈ F, f(α, β, α) = 0 implies α = β

• Property Ω2a1: ∀α, β ∈ F, ∃γ ∈ F such that f(α, β, γ) = g(α, γ, β) = 0

• Property Ω2a2: ∀α, β, γ, δ ∈ F, f(α, γ, δ) = g(α, δ, β) = 0 implies β = γ

• Property Ω3a: ∀α, β, γ, ε, µ ∈ F such that f(α, µ, β) = 0, ∃δ ∈ F such that
f(µ, δ, ε) = g(α, γ, δ) = 0 if and only if ∃τ such that f(β, γ, τ) = g(α, τ, ε) = 0.

We say the pair (f, g) satisfies a certain property if that property is true for the pair
(f, g). We call a pair of polynomials (f, g) strong if the pair (f, g) satisfies the above six
properties.

Note that these properties do not appear to be symmetric in f and g. We now show
some additional properties that a strong pair of polynomials (f, g) has, and show that
there is more symmetry between the implied restrictions on f and g than might be initially
apparent.

Lemma 4 Let F be a field with f, g ∈ F[x, y, z] such that (f, g) is strong. Then,

a. (g, f) satisfies Property Ω1a1

b. (g, f) satisfies Property Ω1a2

c. (g, f) satisfies Property Ω1b2

d. (g, f) satisfies Property Ω2a1

1Note that what might be natural to call Property Ω1b1 is the same as Property Ω1a1.
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e. (g, f) satisfies Property Ω2a2

Proof. Note that we will prove these out of order.
(d.) Let α, β ∈ F. Since (f, g) satisfies Ω1a1, we know f(α, α, α) = 0. Utilizing (f, g)

satisfying Property Ω2a1, ∃τ ∈ F such that f(α, β, τ) = g(α, τ, β) = 0. Then, Ω3a tells
us that ∃γ ∈ F such that g(α, β, γ) = f(α, γ, β). This exactly tells us that (g, f) satisfies
Ω2a1.

(e.) Suppose we have α, β, γ, δ ∈ F such that f(α, δ, β) = 0 and g(α, γ, δ) = 0. Since
(f, g) satisfies Ω1a1, f(α, α, α) = 0. Then, since (f, g) satisfies Ω3a, we know ∃τ ∈ F such
that f(α, γ, τ) = g(α, τ, β) = 0. Then, however, since (f, g) satisfies Ω2a2, we must have
β = γ. Thus, (g, f) satisfies Ω2a2.

(c.) Suppose we have α, β ∈ F such that g(α, β, α) = 0. Since (f, g) satisfies Ω1a1,
we have f(α, α, α) = 0. Since part (e.) tells us that (g, f) satisfies Ω2a2, we can then
conclude α = β. Thus, (g, f) satisfies Ω1b2.

(a). Let α ∈ F. Then, since (f, g) satisfies Ω2a1, we can say ∃γ ∈ F such that
f(α, α, γ) = g(α, γ, α) = 0. Then, since (f, g) satisfies Ω1a2, we must have α = γ. Thus,
g(α, α, α) = 0, so (g, f) satisfies Ω1a1.

(b.) Suppose we have α, β ∈ F such that g(α, α, β) = 0. Since (f, g) satisfies Ω1a1, we
know f(α, α, α) = 0. Then, since (f, g) satisfies Ω2a2, we must have α = β. Thus, (g, f)
satisfies Ω1a2. �

We will now show that the pair (f, g) being strong is sufficient for (g, f)F colorability
to be a knot invariant.

Lemma 5 Let F be a field with f, g ∈ F[x, y, z]. If (f, g) satisfies Properties Ω1a1 and
Ω1a2, then (g, f)F colorability is invariant under Reidemeister move Ω1a.

Proof. Suppose (f, g) satisfies Properties Ω1a1 and Ω1a2, and let H be a projection
of an oriented knot which is (g, f)F colorable. Consider any strand in a knot projection
H, as depicted in Figure 5(a). Then, we consider a new knot projection H ′ which is
the result of performing Reidemeister move Ω1a to H to add a crossing to the strand.
Because we assumed that H is colorable, there must exist a (g, f)F coloring of all the
strands in H. Let α be the label on the strand. Now, consider a coloring of H ′ given by
coloring every strand in H ′ with the analogous label from H, with the exception that the
two strands depicted on the right in Figure 5(a) are labeled α. Note that the expression
associated to the crossing in H ′ is f(α, α, α), and since (f, g) satisfies Property Ω1a1,
the relation f(α, α, α) = 0 holds for all α. Furthermore, we then see that because the
coloring on H is valid, every other crossing in H ′ also satisfies the requisite relation, since
each other crossing in H ′ has exactly the same labels as the analogous crossing in H.
Additionally, we also note that at least two distinct labels are used, because the same
number of distinct labels are used in H and H ′. Thus, the coloring on H ′ is a valid
(g, f)F coloring, showing H ′ is (g, f)F colorable. Now, to address the other direction of

the Ω1a Reidemeister move, let K be a projection of an oriented knot which is (g, f)F
colorable. Suppose K has a crossing as depicted in Figure 5(b). Then we can consider
a new knot projection K ′ which is the result of performing the Ω1a Reidemeister move
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Figure 5: The two directions of the Ω1a Reidemeister move.

to K at the crossing. Because we assumed that K is colorable, there must exist a (g, f)F
coloring of all strands in K. Considering such a coloring, let α and β be the labels on
the corresponding strands on the right diagram of Figure 5(b). The associated relation
with this crossing is f(α, β, α) = 0, as the crossing is right-handed. Since (g, f) satisfies
Property Ω1a2, we must have α = β. Thus, since α = β, the two strands depicted in
the right diagram of 5(b) must have the same label. Hence, we can construct a (g, f)F
coloring for K ′ by coloring every strand in K ′ with the analogous label from K, with the
exception of coloring the single strand depicted on the left in 5(a) with α. Notably, this
coloring for K ′ is in fact a (g, f)F coloring, as the strands in every crossing in K ′ have
exactly the same labels as the analogous crossings in K. Thus, because the coloring on
K is a valid coloring, each crossing satisfies f(x, y, z) = 0 or g(x, y, z) = 0 where x is the
overstrand label, y is the incoming understrand label, and z is the outgoing understrand
label. Additionally, we also note that at least two distinct labels are used, because the
same number of distinct labels are used in K and K ′. Thus, the coloring on K ′ is a valid
(g, f)F coloring, showing K ′ is (g, f)F colorable.

Thus, (g, f)F colorability is invariant under Reidemeister move Ω1a. �

Lemma 6 Let F be a field with f, g ∈ F[x, y, z]. If (f, g) satisfies Properties Ω1a1 and
Ω1b2, then (g, f)F colorability is invariant under Reidemeister move Ω1b.

Proof. This lemma is proved nearly identically to the last lemma. Figure 6 provides the
analogous local structures and labelings.

Figure 6: The two directions of the Ω1b Reidemeister move.

�

Lemma 7 Let F be a field with f, g ∈ F[x, y, z] as polynomials. If (f, g) is strong, then
(g, f)F colorability is invariant under Reidemeister move Ω2b.
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Proof. Suppose (f, g) is strong and consider Figure 7(a). Suppose H is a projection of
an oriented knot which is (g, f)F colorable. Suppose H has a pair of strands as depicted
on the left in Figure 7(a). Then, we can consider a new knot projection H ′ which is
identical to H except that the left-most strand is slid over the other strand, with the
effect of adding two crossings. In other words, H ′ is the result of performing the Ω2a
Reidemeister move on H to add two crossings, as shown on the right of Figure 7(a).
Because we assumed that H is colorable, there must exist a (g, f)F coloring of all strands
in H. Considering such a coloring, let α and β be the labels on the corresponding strands
in the left diagram of Figure 7(a).

Now, note that since (f, g) satisfies Property Ω2a1, there is some γ ∈ F such that
g(α, γ, β) = 0 and f(α, β, γ) = 0. Consider a coloring on H ′ given by coloring every strand
in H ′ with the analogous label from H, with the exception that the strands appearing
in Figure 7(a) receive labels as shown. One can see that the expression associated with
the top crossing in the diagram on the right is g(α, γ, β) and the expression associated
with the bottom crossing is f(α, β, γ). Thus, since g(α, γ, β) = 0 and f(α, β, γ) = 0,
as discussed above, and the relations associated with every other crossing in H ′ remain
unchanged, one can note that the relation at every crossing in H ′ relative to a (g, f)F
coloring is valid. Furthermore, since the coloring on H ′ has at least as many distinct
values as that on H, namely at least two, we have shown that H ′ has a valid (g, f)F
coloring.

Figure 7: The two directions of the Ω2a Reidemeister move.

Now, let K be a projection of an oriented knot which is (g, f)F colorable and consider
Figure 7(b). Suppose K has a pair of crossings as depicted on the right of Figure 7(b).
Then, we can consider a new knot projectionK ′ which is identical toK except that strands
depicted in Figure 7(b) are slid apart with the effect of removing the two crossings. In
other words, K ′ is the result of performing the Ω2a Reidemeister move on K at the
crossings in the right diagram of Figure 7(b), to produce the diagram to its left. Because
we assumed that K is colorable, there must exist a (g, f)F coloring of all strands in K.
Considering such a coloring, let α, β, γ, δ be the labels on the corresponding strands on
the right of Figure 7(a).

Note that since we have a valid coloring of K, there are at least two distinct labels
associated to the strands in K. Note that either there are distinct labels in K outside
Figure 7(b), or α 6= β. To see this, suppose α = β; then at the top-most crossing in the
right in Figure 7(b) we have the equation g(α, δ, β) = g(α, δ, α) = 0. Since (f, g) is strong,
Lemma 4 tells us that (g, f) satisfies Property Ω1b2, meaning g(α, δ, α) = 0 implies α = δ.
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We then get that the bottom-most crossing in the right in Figure 7(b) has the equation
f(α, γ, δ) = f(α, γ, α) = 0. By the same logic (f, g) satisfying Ω1b2 implies γ = α. Thus
if α = β, all labels in Figure 7(b) are equal, and so since we have a valid (g, f)F coloring
there must be some strand of K not shown in in Figure 7(b) that takes on a distinct label.

Now, consider the crossings in the right diagram of Figure 7(b). We have g(α, δ, β) = 0
and f(α, γ, δ) = 0. Since (f, g) is strong, the pair satisfies Property Ω2a2 meaning these
equations imply β = γ. Thus, we can form a coloring of K ′ by coloring the strands with
their analogous labels in K, but coloring the rightmost strand in the left diagram of Figure
7(b) by β = γ. This is a (g, f)F coloring of K ′ as either α 6= β, in which case we have
two distinct labels in K ′, or there are strands outside of Figure 7(b) that take on different
labels, in which case these distinct labels are retained in K ′ outside 7(b). Additionally,
each crossing will still be labeled by roots of either f or g as they were in K. Thus, K ′ is
(g, f)F colorable.

Thus, (g, f)F colorability is invariant under Reidemeister move Ω2a. �

Lemma 8 Let F be a field with f, g ∈ F[x, y, z]. If (f, g) is strong, then (g, f)F colorability
is invariant under Reidemeister move Ω3a.

Proof. Suppose (f, g) satisfies Property Ω3a, and suppose K is a projection of an
oriented knot which is (g, f)F colorable. Suppose K has 3 strands crossing as depicted
on the left of Figure 8, and define K ′ to be the oriented knot diagram identical to K,
with the exception that the top-most strand is translated above the central crossing, as
depicted on the right in Figure 8. Since we assumed K was (g, f)F colorable, there must
exist a complete valid (g, f)F coloring of K. Consider such a coloring, and let α, β, γ, δ, ε
and µ be the labels of said coloring on the strands on the right in Figure 8.

Note that there must be two strands in K, neither of which are the strand labeled
by δ, which have distinct labels under our valid coloring. To see this, suppose every
label in K was equal aside from δ, so namely γ = α. Then since (f, g) is strong, (g, f)
satisfies Property Ω1b2 by Lemma 4, and so considering the bottom-left crossing in the
left diagram of Figure 8 we have the equation g(α, δ, γ) = g(α, δ, α) = 0 which implies
that δ = α. This then implies that the coloring is not valid, as there are not 2 distinct
labels in the coloring, and thus there must be two strands, neither of which are the one
labeled by δ, which have different labels.

We now consider the 3 corresponding equations at each of the crossings in the left
diagram of Figure 8: for the central one f(µ, δ, ε) = 0, for the bottom-left crossing
g(α, γ, δ) = 0, and for the bottom-right crossing f(α, µ, β) = 0. Since (f, g) is strong, it
satisfies Property Ω3a, and thus because δ exists there must exist some τ ∈ F such that
f(β, γ, τ) = 0 and g(α, τ, ε) = 0. We can then define a coloring of K ′ identical to the
one used for K, with the exception that the middle segment originally labeled δ in K
is labeled τ in K ′, as depicted on the right of Figure 8. This coloring is a valid (g, f)F
coloring of K ′, as each crossing not depicted in the right diagram of Figure 8 in K ′ is
identical to the analogous crossing in K, and thus the labels at the crossing form a root
of either f or g. For the new crossings in K ′, we defined τ specifically to satisfy both of
the crossings f(β, γ, τ) = 0 and g(α, τ, ε) = 0, so each crossing in K ′ has labels satisfying
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either f or g. Additionally, this coloring is valid as the only label that is potentially not
used from K is δ; however, we’ve shown there must be two strands with distinct labels
that are not the δ strand in the left diagram of Figure 8. These labels and crossings would
then be preserved in K ′, and thus K ′ has at least two distinct labels. Thus K ′ is (g, f)F
colorable.

The other direction is handled nearly identically. Thus, if (f, g) is strong, then (g, f)F
colorability is invariant under the Ω3a Reidemeister move.

Figure 8: The two directions of the Ω3a Reidemeister move.

�
We end this section by stating a theorem that serves to summarize the findings of this
section.

Theorem 9 If we have some field F and f, g ∈ F[x, y, z] such that the pair (f, g) is strong,
then (g, f)F colorability is an invariant for oriented knots.

Proof. This theorem is a direct corollary of Lemmas 5,6,7,8 and Polyak’s proof that in-
variance under the Reidemeister moves Ω1a, Ω1b, Ω2a, and Ω3a implies being an oriented
knot invariant [3]. �

3 Linear Case

In the following section, we provide a complete description of strong linear polynomial
pairs, establishing exactly the form a pair of linear polynomials must have in order to
be strong. We then conclude the only strong pair of linear polynomials (f, g) such that
f = g occurs when f is the Fox n-coloring polynomial 2x− y − z.

Theorem 10 Let F be a field and let g, f ∈ F[x, y, z] be linear polynomials. Then, (f, g)
is strong if and only if f(x, y, z) = ax+ by− (a+ b)z and g(x, y, z) = cf(x, z, y) for some
a, b, c ∈ F with a+ b, b, c 6= 0.

Proof. (=⇒) We start with arbitrary linear g, f ∈ F[x, y, z] such that f(x, y, z) =
ax + bx + cz + d and g(x, y, z) = kx + ly + mz + n. Suppose (f, g) is strong. Our proof
will proceed by examining the restrictions that the properties place on the coefficients of
f and g.
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Since (f, g) is strong, (f, g) and (g, f) satisfy Property Ω1a1, so we can say that for
any α,

0 = f(α, α, α) = (a+ b+ c)α + d and

0 = g(α, α, α) = (k + l +m)α + n
(1)

In particular, this must hold with α = 0, so we must have d = 0 = n. Considering the
equalities in (1) for α 6= 0, note that this also tells us that (a+ b+ c) = 0 = (k + l +m),
since we clearly have no zero divisors. Thus, c = −(a+ b) and m = −(k + l).

Now, note that since (f, g) and (g, f) satisfy Properties Ω1a2 and Ω1b2, we have that
for all α, β, if any of the following four equations holds, then we must have that α = β:

0 = f(α, α, β) = (a+ b)α + cβ

0 = f(α, β, α) = (a+ c)α + bβ

0 = g(α, α, β) = (k + l)α +mβ

0 = g(α, β, α) = (k +m)α + lβ.

(2)

Recall that we determined above that c = −(a+ b) and m = −(k+ l), so we can simplify
the above equations in (2) to say that if for any α, β any of the equations in (3) hold,
then α = β:

0 = c(β − α)

0 = b(β − α)

0 = m(β − α)

0 = l(β − α).

(3)

In other words, each of the equations in (3) will not hold if β−α 6= 0, which tells us that
each of b, c, l,m must be non-zero.

Next, recall that since (g, f) satisfies Property Ω2a2, we must have that for any
α, β, γ, δ, if f(α, δ, β) = 0 = g(α, γ, δ), then we must have β = γ. Since b 6= 0 we
can see that f(α, δ, β) = 0 if and only if δ = −(aα + cβ)/b. Then, we can see that
f(α, δ, β) = 0 = g(α, γ, δ) if and only if

0 = kα + lγ − m

b
(aα + cβ) = (k − am

b
)α + lγ − cm

b
β. (4)

Thus, if equality in (4) holds, then we must have β = γ. Since that conditional must hold
for all α, β, γ, we must have that k − am

b
= 0 and l = cm

b
.

We can now say that

g(x, y, z) =
am

b
x+

cm

b
y +mz =

m

b
(ax+ cy + bz)

where m/b is a unit in our field. We have f(x, y, z) = ax+ by + cz = ax+ by − (a+ b)z,
so this exactly tells us that g(x, y, z) = (m/b)f(x, z, y). Noting that we have b, c 6= 0 and
m/b a unit, we have completed this direction.

(⇐=) Suppose we have f, g ∈ F[x, y, z] such that f(x, y, z) = ax + by − (a + b)z and
g(x, y, z) is some unit multiple of f(x, z, y) where a, b ∈ F with a+ b 6= 0 6= b.
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Since multiplication by a unit does not affect zeros of a polynomial, we can assume
without loss of generality that g = f(x, z, y). So it will suffice to show that (f, g) satisfies
Properties.

First, suppose we have α, β such that f(α, α, β) = 0. Then, (a + b)(α − β) = 0, so
since a + b 6= 0, we must have α = β, demonstrating Ω1a2. Furthermore, note that it is
clear that (f, g) satisfies Property Ω1a1.

Now, suppose we have α, β, γ, δ such that f(α, γ, δ) = 0 = g(α, δ, β). Then

aα + bγ − (a+ b)δ = 0 = aα− (a+ b)δ + bβ,

so since b 6= 0, simplifying reveals that γ = δ. Hence, (f, g) satisfies property Ω2a2
Now, suppose we have arbitrary α, β. Then, noting that a+ b 6= 0, letting

γ =
aα + bβ

a+ b

we can note that f(α, β, γ) = g(α, γ, β) = 0. Thus, (f, g) satisfies Property Ω2a1.
It remains to show that (f, g) satisfies Property Ω3a. Suppose we have α, β, γ, ε, µ with

f(α, µ, β) = 0. Now suppose there exists a δ such that f(µ, δ, ε) = g(α, γ, δ) = 0. Then,
substituting, we have aµ+bδ−(a+b)ε = aα−(a+b)γ+bδ, so aµ−(a+b)ε = aα−(a+b)γ.
We also have 0 = f(α, µ, β) = aα+ bµ− (a+ b)β, so since b 6= 0 we can solve for µ to get
µ = ((a+ b)β − aα)/b. Then we can combine the equations we have and say

aα− (a+ b)γ = a
(a+ b)β − aα

b
− (a+ b)ε.

Then, abα−b(a+b)γ = a(a+b)β−a2α−b(a+b)ε, which we can simplify to (a+b)(aα+bε) =
(a+b)(aβ+bγ). Since a+b 6= 0, we can divide both sides by a+b to get aβ+bγ = aα+bε.
Now, let τ = aβ+bγ

a+b
. Then we see f(β, γ, τ) = aβ + bγ − (a+ b)(aβ + bγ)/(a+ b) = 0 and

g(α, τ, ε) = aα − (a + b)(aα + bε)/(a + b) + bε = 0. Note the converse direction has an
analogous proof.

Thus, we conclude that (f, g) satisfies Property Ω3a, and we have indeed shown that
(f, g) is strong. �

Corollary 11 The only linear polynomials f for which (f, f) is strong are multiples of
the Fox n-coloring polynomial, 2x− y − z, or multiples of y − z.

Proof. By the previous theorem, the only linear polynomials that are strong are of the
form f(x, y, z) = ax+ by − (a+ b)z and g(x, y, z) = cf(x, z, y) = cax+−c(a+ b)y + cbz
where a+ b, b, c 6= 0. If f = g, then we have ax+ by− (a+ b)z = cax− c(a+ b)y+ cbz so
a = ca, b = −c(a + b), and −(a + b) = cb. Substituting the last two equations together
yields that b = c(cb) = c2b, and since b 6= 0 we can divide to get that c2 = 1, meaning
c = ±1. If c = −1, then a = −a meaning a = 0, and thus f(x, y, z) = by − bz = b(y − z).
Now if c = 1, then a = a and b = −(a + b) meaning a = −2b. Thus, f(x, y, z) =
−2bx+ by+ bz = −b(2x− y− z). Thus, f is either a multiple of 2x− y− z or a multiple
of y − z. �
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4 Quadratic Case

Let F be a field and let p ∈ F[x, y, z]. Then, p is said to be quadratic if p is of the form

p(x, y, z) = a0 + a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz,

with coefficients in F. A quadratic polynomial p will be said to be irreducible if it cannot
be written as the product of two non-constant polynomials. In this section, we prove that
there are no strong pairs of polynomials where one of the polynomials is an irreducible
quadratic.

The following is the main result of this section. In the proof, we bold certain relations
to bring the reader’s attention to them.

Theorem 12 Let F be a field with characteristic not equal to 2. Then for any pair
of polynomials f, g ∈ F[x, y, z], if (f, g) is strong, then neither f nor g are irreducible
quadratics.

Proof. This proof will not utilize Ω3a, and so by Lemma 4 we note every property used
in the proof is satisfied exactly by both f and g. Hence, it suffices to demonstrate that f
must factor, and we need not consider the form of g separately.

Let f(x, y, z) = a0 + a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz be a

quadratic polynomial in F[x, y, z], and suppose that (f, g) is strong. Then (f, g) satisfies
Property Ω1a1, so ∀α ∈ F, f(α, α, α) = 0. We can plug this in to get that

f(α, α, α) = a0 + (a1 + a2 + a3)α + (a4 + a5 + a6 + a7 + a8 + a9)α
2 = 0.

Since this holds for any α ∈ F, consider α = 0. This gives us that a0 = 0, meaning we
can now factor f(α, α, α) to the form

f(α, α, α) = α[(a1 + a2 + a3) + (a4 + a5 + a6 + a7 + a8 + a9)α] = 0.

For any α 6= 0, we can simplify this expression by dividing by α to get

(a1 + a2 + a3) + (a4 + a5 + a6 + a7 + a8 + a9)α = 0.

The equality above must hold for all α 6= 0; however, this is a linear expression in α, and
thus will have only one solution if a4 +a5 +a6 +a7 +a8 +a9 6= 0. Having only one solution
would contradict Property Ω1a1; thus, we must have that

a4 + a5 + a6 + a7 + a8 + a9 = 0.

Furthermore, for α 6= 0, f(α, α, α) will not be equal to zero unless a1 + a2 + a3 = 0.
Thus as a result of Property Ω1a1, we have that the following two equations hold on the
coefficients of f , given a0 = 0:

a1 + a2 + a3 = 0 (5)

a4 + a5 + a6+a7 + a8 + a9 = 0. (6)
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Hence, in order to satisfy Property Ω1a1, f(x, y, z) = a1x + a2y + a3z + a4x
2 + a5y

2 +
a6z

2 + a7xy + a8xz + a9yz where (5) and (6) hold.
From here, there are 4 different cases, each with a slightly different approach. Either

(1) both a5, a6 = 0, (2) a5 6= 0 but a6 = 0, (3) a5 = 0 but a6 6= 0, or (4) both a5, a6 6= 0.
However, note that any of the properties f(x, y, z) satisfies, f(x, z, y) also satisfies as
(f, g) and (g, f) satisfy the same conditions by Lemma 4. Hence, case 3 for f(x, y, z) is
equivalent to case 2 for f(x, z, y), as the coefficients are determined by the monomial they
scale. So showing that f factors in case 2 demonstrates that f(x, z, y) also factors in its
case 2, which is case 3 for f(x, y, z). Hence, these cases are equivalent, and it suffices to
show f factors in case 2. Thus, there are only 3 cases in total to consider.

Case 1: Suppose that a5, a6 = 0. Since f satisfies Property Ω1a1 it must be of the
form f(x, y, z) = a1x+ a2y+ a3z+ a4x

2 + a7xy+ a8xz+ a9yz where (5) holds and (6) can
be restated plugging in the new values of a5 and a6 as:

a4 + a7 + a8 + a9 = 0. (7)

Consider that f satisfies Property Ω1a2, meaning ∀α, β ∈ F we have f(α, α, β) = 0
implies that α = β. Note that such roots must exist, as by Property Ω2a1 we have that
∀α, β ∈ F ∃γ ∈ F such that f(α, β, γ) = 0. Taking α = β gives that ∃γ ∈ F such that
f(α, α, γ) = 0, which is a root of the desired form. So f cannot vacuously satisfy the
property.
We can plug in the values into f(α, α, β) to see that for any α, β:

f(α, α, β) = (a1 + a2)α + a3β + (a4 + a7)α
2 + (a8 + a9)αβ = 0.

Rearranging (5) and (7) shows that a1 + a2 = −a3 and a4 + a7 = −(a8 + a9) respectively.
Substituting these values in gives that

f(α, α, β) = −a3α + a3β − (a8 + a9)α
2 + (a8 + a9)αβ = (β − α)(a3 + (a8 + a9)α) = 0.

Note that if a8+a9 6= 0, then there is a singular value α0 ∈ F such that a3+(a8+a9)α0 = 0.
Thus, we can take any β, particularly β 6= α0, and have that

f(α0, α0, β) = (β − α0)(a3 + (a8 + a9)α0) = 0.

This violates Property Ω1a2, and so we must have a8 + a9 = 0 meaning a9 = −a8. Note
that this implies that (7) becomes a4 + a7 = 0, or a7 = −a4. Furthermore, if a3 = 0,
then we can pick any value of α and β independently as f(α, α, β) ≡ 0, which also
violates Property Ω1a2. Thus, a3 6= 0, meaning in order for f to be quadratic and satisfy
Properties Ω1a1 and Ω1a2, f(x, y, z) = a1x+a2y+a3z+a4x

2−a4xy+a8xz−a8yz where
a3 6= 0 and (5) holds.
Now consider that f also satisfies Property Ω1b2, so ∀α, β ∈ F we have f(α, β, α) = 0
implies that α = β. Since (g, f) satisfies Property Ω2a1 by assumption, by a similar
argument as above there is a root of f of the form (α, β, α) ∈ F3, so f cannot vacuously
satisfy this property as well. Evaluating f(α, β, α) gives that

f(α, β, α) = (a1 + a3)α + a2β + (a4 + a8)α
2 − (a4 + a8)αβ = 0.
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Rearranging (5) gives that a1 + a3 = −a2, so we can once again simplify the above
expression into

f(α, β, α) = −a2α + a2β + (a4 + a8)α
2 − (a4 + a8)αβ = (β − α)(a2 − (a4 + a8)α) = 0.

This is exactly analogous to the previous condition, meaning that in order to satisfy
Property Ω1b2 we need that a4 + a8 = 0 or a8 = −a4 and a2 6= 0. Thus, for f to satisfy
Properties Ω1a1, Ω1a2, and Ω1b1 respectively, we need that f(x, y, z) = a1x+ a2y+ a3z+
a4x

2 − a4xy − a4xz + a4yz where a2, a3 6= 0 and (5) holds.
Now, consider that f satisfies Property Ω2a1, i.e. ∀α, β ∈ F ∃γ ∈ F such that f(α, β, γ) =
0. Substituting gives

f(α, β, γ) = a1α + a2β + a3γ + a4α
2 − a4αβ − a4αγ + a4βγ

= (a3 + a4[β − α])γ + a1α + a2β + a4α
2 − a4αβ

= 0.

We can move the γ term to the other side to see that for any α, β ∈ F there is a γ ∈ F
such that

(a4[α− β]− a3)γ = a1α + a2β + a4α
2 − a4αβ.

Since this holds for any α and β, it must hold for β = 0, meaning for any α ∈ F we have
that

(a4α− a3)γ = α(a1 + a4α)

holds for some γ ∈ F. Suppose a4 6= 0; then there is a lone value of α, α0 such that
a4α0 − a3 = 0. In fact, α0 = a3

a4
, which is nonzero. Using this to evaluate a1 + a4α gives

that a1 + a4
a3
a4

= a1 + a3 = −a2 is nonzero. Thus, the right-hand side equals −a2a3
a4

, i.e.
we have 0γ = 0 = −a2a3

a4
which is impossible for any γ ∈ F. Thus, for α = a3

a4
and β = 0,

there is no γ such that f(α, β, γ) = 0, which violates Property Ω2a1. Hence, a4 = 0, but
this means that f is of the form a1x + a2y + a3z, which is a linear polynomial. Hence,
f is no longer a quadratic polynomial, meaning there is no quadratic polynomial f with
a5, a6 = 0 such that both (f, g) and (g, f) satisfy Properties Ω1a1, Ω1a2, Ω1b2, and Ω2a1
respectively.

Cases 2 & 3: Now suppose a5 6= 0 but a6 = 0, so for f to satisfy Property Ω1a1 we
need that f(x, y, z) = a1x+ a2y+ a3z+ a4x

2 + a5y
2 + a7xy+ a8xz+ a9yz where (5) holds

as stated but (6) becomes

a4 + a5 + a7 + a8 + a9 = 0. (8)

Since f satisfies Property Ω1a2, ∀α, β ∈ F we have that f(α, α, β) = 0 implies α = β.
Such a root must exist by Property Ω2a1, so f cannot satisfy this conditional vacuously.
Substituting gives that

f(α, α, β) = (a1 + a2)α + a3β + (a4 + a5 + a7)α
2 + (a8 + a9)αβ = 0.

Note that by rearranging (5) and (8) we see that a1+a2 = −a3 and a4+a5+a7 = −(a8+a9),
meaning we have that

f(α, α, β) = −a3α + a3β − (a8 + a9)α
2 + (a8 + a9)αβ = (β − α)(a3 + (a8 + a9)α) = 0.

the pump journal of undergraduate research 5 (2022), 1–23 15



This is the same as in Case 1, so we can conclude that a9 = −a8 and a3 6= 0. This means
that (8) now reads as

a4 + a5 + a7 = 0 (9)

So for f to satisfy Properties Ω1a1, Ω1a2, and Ω2a1, f must be of the form f(x, y, z) =
a1x+a2y+a3z+a4x

2 +a5y
2 +a7xy+a8xz−a8yz where a3 6= 0, (5) holds, and (9) holds.

Now consider that f satisfies Property Ω1b2, i.e. ∀α, β ∈ F we have that f(α, β, α) = 0
implies α = β. Like before, Property Ω2a1 prevents f from satisfying this implication
vacuously. We then have

f(α, β, α) = (a1 + a3)α + a2β + (a4 + a8)α
2 + a5β

2 + (a7 − a8)αβ = 0.

Since a5 6= 0, we can rearrange the equation into the form of a univariate polynomial in
β with coefficients in F[α] to get that

a5β
2 + (a2 + [a7 − a8]α)β + (a1 + a3)α + (a4 + a8)α

2 = 0.

We can then use the quadratic formula as F is not of characteristic 2 to get that

β =
([a8 − a7]α− a2)±

√
([a8 − a7]α− a2)2 − 4a5α(a1 + a3 + [a4 + a8]α)

2a5
.

Since we need that this implies α = β, the discriminant must be 0, as if it wasn’t then
β would have two distinct values, one of which would not be α. This would then imply
there is an α 6= β such that f(α, β, α) = 0, which violates Property Ω1b2. Thus, the

discriminant must be 0, giving β = (a8−a7)α−a2
2a5

. We know that this equality must reduce
to β = α for any α, so we get that

(a8 − a7)α− a2
2a5

= α =⇒ (a8 − a7)α− a2 = 2a5α

which is only possible if a8 − a7 = 2a5 or a8 = 2a5 + a7 and a2 = 0. Note that a2 = 0
means that (5) becomes a1 + a3 = 0 or a3 = −a1. Using these new relations, we can
simplify the discriminant to get that

([a8 − a7]α− a2)2 − 4a5α(a1 + a3 + [a4 + a8]α) = (2a5α)2 − 4a5α
2(a4 + 2a5 + a7)

= 4a5α
2(a5 − a4 − 2a5 − a7)

= −4a5α
2(a4 + a5 + a7).

However, (9) states that a4 + a5 + a7 = 0, so the discriminant is 0, as desired. Thus, for f
to satisfy Properties Ω1a1, Ω1a2, Ω1b2, and Ω2a1 given a5 6= 0 and a6 = 0, f must be of
the form f(x, y, z) = a1x− a1z + a4x

2 + a5y
2 + a7xy + (2a5 + a7)xz − (2a5 + a7)yz where

a1 6= 0 and (9) holds.
Now let’s consider that f satisfies Property Ω2a1, meaning ∀α, β ∈ F ∃γ ∈ F such

that f(α, β, γ) = 0. We then have

f(α, β, γ) = a1α− a1γ + a4α
2 + a5β

2 + a7αβ + (2a5 + a7)αγ − (2a5 + a7)βγ = 0.
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We can rearrange for γ to get that

([2a5 + a7][α− β]− a1)γ + a1α + a4α
2 + a5β

2 + a7αβ = 0

⇓
(a1 + [2a5 + a7][β − α])γ = a1α + a4α

2 + a5β
2 + a7αβ.

Since this must hold for any α, we can take α = 0 and get that for any β ∈ F there is
some γ ∈ F such that

([2a5 + a7]β + a1)γ = a5β
2.

Supposing that 2a5 + a7 6= 0, we may find a specific value β0 6= 0 for β such that
(2a5 + a7)β0 + a1 = 0. Taking this value of β gives that a5β

2
0 = 0γ = 0. However, a5 6= 0,

and since β0 6= 0, we have β2
0 6= 0. Thus, this equation is impossible, meaning ∀γ ∈ F,

f(0, β0, γ) 6= 0. This violates Property Ω2a1, and so 2a5 + a7 = 0, or a7 = −2a5. Using
this we can evaluate (9) to get a4+a5−2a5 = a4−a5 = 0, or a4 = a5. This then simplifies
f(α, β, γ) to saying

a1γ = a1α + a5α
2 + a5β

2 − 2a5αβ.

Since a1 6= 0, such a γ will always exist for any α, β ∈ F, satisfying the Property. Thus,
for f to satisfy the Properties given a5 6= 0, a6 = 0, f must be of the form f(x, y, z) =
a1x − a1y + a5x

2 + a5y
2 − 2a5xy where a1 6= 0. However, this can be factored into

f(x, y, z) = a1(y−x) +a5(y−x)2 = (y−x)(a5y−a5x+a1). Thus, f is not an irreducible
quadratic. In conclusion, there is no irreducible quadratic f with coefficients a5 6= 0,
a6 = 0 satisfying the Properties. As discussed, this also implies there is no irreducible
quadratic f satisfying the same properties if a5 = 0 and a6 6= 0, proving Case 3 as well.

Case 4: Finally, suppose a5, a6 6= 0, so for f to satisfy Ω1a1, we need f to be of the
form f(x, y, z) = a1x+ a2y+ a3z+ a4x

2 + a5y
2 + a6z

2 + a7xy+ a8xz+ a9yz where (5) and
(6) hold as stated. f satisfies Property Ω1a2, meaning ∀α, β ∈ F we have f(α, α, β) = 0
implies α = β. This cannot hold, vacuously, by Property Ω2a1. Substitution yields

f(α, α, β) = (a1 + a2)α + a3β + (a4 + a5 + a7)α
2 + a6β

2 + (a8 + a9)αβ = 0.

We can simplify the above using (5) and (6) as a1 + a2 = −a3 and a4 + a5 + a7 =
−(a6 + a8 + a9) yielding:

f(α, α, β) = −a3α + a3β − a6α2 + a6β
2 − (a8 + a9)α

2 + (a8 + a9)αβ

= (β − α)(a3 + a6[β + α] + [a8 + a9]α) = 0.

Note that since a3 + a6(β + α) + (a8 + a9)α is linear in α and β, it will have zeroes in
F. We need these zeroes to occur only when α = β, otherwise we violate Property Ω1a2.
Thus, we need that

a3 + 2a6α + (a8 + a9)α = a3 + (2a6 + a8 + a9)α = 0

for any α. This only occurs if a3 = 0 and 2a6 + a8 + a9 = 0 or a9 = −(2a6 + a8). The
first bold equation implies that a2 = −a1 by (5) and the second bold equation implies
that

a4 + a5 + a7 − a6 = 0 (10)
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by (6). Note that these values of the coefficients make

a3 + a6(β + α) + (a8 + a9)α = a6(β + α)− 2a6α = a6(β − α)

and so
f(α, α, β) = a6(β − α)2

which is only ever 0 when α = β, as desired. Thus, for f to satisfy Property Ω1a2 and
Property Ω1a1 given a5, a6 6= 0, it must be of the form

f(x, y, z) = a1x− a1y + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz − (2a6 + a8)yz

where (10) holds.
Now consider that f satisfies Property Ω1b2, so ∀α, β ∈ F we have that f(α, β, α) = 0

implies that α = β. This also cannot be satisfied vacuously by Ω2a2. Evaluating yields

f(α, β, α) = a1α− a1β + (a4 + a6 + a8)α
2 + a5β

2 + (a7 − 2a6 − a8)αβ = 0

By (10), a4 = a6 − a5 − a7 which substituting into the last monomial gives that

f(α, β, α) = a1(α− β) + (2a6 + a8 − a5 − a7)α2 + a5β
2 + (a7 − 2a6 − a8)αβ = 0

which can be refactored into the form

f(α, β, α) = −a1(β − α) + a5(β − α)(β + α) + (a7 − 2a6 − a8)α(β − α)

= (β − α) (−a1 + a5[β + α] + [a7 − 2a6 − a8]α)︸ ︷︷ ︸
trouble factor

= 0.

Under all values of α and β in F, we need that this equality only holds when α = β. Thus,
we must verify that α = β is a valid 0. Substituting α = β into the “trouble factor” gives
that

−a1 + 2a5α + (a7 − 2a6 − a8)α = −a1 + (2a5 + a7 − 2a6 − a8)α = 0

for any α. This is only possible if a1 = 0 and 2a5+a7−2a6−a8 = 0 or a8 = 2a5 + a7 − 2a6.
Plugging this new value in to our original “trouble” expression shows that

−a1 + a5(β + α) + (a7 − 2a6 − a8)α = a5(β + α)− 2a5α = a5(β − α)

which shows that
f(α, β, α) = a5(β − α)2

This expression is only ever 0 when α = β as a5 6= 0, as desired. So, given a5, a6 6= 0,
for f to satisfy Properties Ω1a1,Ω1a2 and Ω1b2, f must be of the form f(x, y, z) =
a4x

2 + a5y
2 + a6z

2 + a7xy + (2a5 + a7 − 2a6)xz − (2a5 + a7)yz where (10) still holds.
Now consider that f satisfies Property Ω2a2, so ∀α, β ∈ F ∃γ ∈ F such that f(α, β, γ) = 0.
Substituting gives

f(α, β, γ) = a4α
2 + a5β

2 + a6γ
2 + a7αβ + (2a5 + a7 − 2a6)αγ − (2a5 + a7)βγ = 0.
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We can rearrange this expression into the form of a quadratic on γ with coefficients in
F[α, β] to get that

a6γ
2 + ([2a5 + a7 − 2a6]α− [2a5 + a7]β)γ + a4α

2 + a5β
2 + a7αβ = 0.

A γ will exist so long as the discriminant is square, i.e. if for any α, β ∈ F, the expression

([2a5 + a7 − 2a6]α− [2a5 + a7]β)2 − 4a6(a4α
2 + a5β

2 + a7αβ)

is a square. Refactoring like terms with respect to α and β gives(
[2a5+a7−2a6]

2−4a4a6
)
α2+

(
[2a5+a7]

2−4a5a6
)
β2−2

(
[2a5+a7−2a6][2a5+a7]+2a6a7

)
αβ

Rearranging (10) gives that a7 = a6 − a4 − a5, so substituting that in gives(
[a5 − a6 − a4]2 − 4a4a6

)
α2 +

(
[a5 + a6 − a4]− 4a5a6

)
β2

− 2
(
[a5 − a6 − a4][a5 + a6 − a4] + 2a6[a6 − a5 − a4]

)
αβ

which simplifies to (
[a4 − a5 − a6]2 − 4a5a6

)(
α− β

)2
.

Thus, a γ will exist so long as (a4− a5− a6)2− 4a5a6 is a square in F. However, factoring
f(α, β, γ) is fundamentally the same as factoring f(x, y, z). Thus, given f(x, y, z) = 0, or

a6z
2 + ([2a5 + a7 − 2a7]x− [2a5 + a7]y)z + a4x

2 + a5y
2 + a7xy = 0

and (a4 − a5 − a6)2 − 4a5a6 = ω2 for some ω ∈ F, we can use the quadratic formula and
simplify just as before to get that

z =
(2a5 + a7)y − (2a5 + a7 − 2a6)x±

√
ω2(x− y)2

2a6

=
(a5 + a6 − a4)y + (a4 + a6 − a5)x± ω(x− y)

2a6

This means that f(x, y, z) is equal to

f(x, y, z) = a6

(
z − [a4 + a6 − a5 + ω]x+ [a5 + a6 − a4 − ω]y

2a6

)
×
(
z − [a4 + a6 − a5 − ω]x+ [a5 + a6 − a4 + ω]y

2a6

)
=

1

4a6

(
[a4 + a6 − a5 + ω]x+ [a5 + a6 − a4 − ω]y − 2a6z

)
×
(

[a4 + a6 − a5 − ω]x+ [a5 + a6 − a4 − ω]y − 2a6z
)

showing that f factors. Thus, there is no irreducible quadratic f with a5, a6 6= 0 such
that f is in a strong pair.

In all 4 cases, f factored into a product of linear terms, showing that f cannot be an
irreducible quadratic. Thus, there is no irreducible quadratic polynomial over a field of
characteristic not 2 in a strong pair. �
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Corollary 13 Let F be a field with characteristic not 2. Then there is no strong pair of
polynomials (f, g) which has either f or g as an irreducible quadratic over F.

5 Automorphism Classes

In this section, we consider how automorphisms ϕ of our field of labels F affects (g, f)F
colorings. Additionally, noting that automorphisms of F extend to automorphisms of
F[x, y, z] by applying ϕ to the coefficients, we develop tools for building new pairs of
polynomials (g′, f ′) whose colorability is an invariant. This lets us conclude that the
family of pairs of polynomials forming a knot invariant features polynomials of unbounded
degrees.

First, note that given an automorphism ϕ of F and a polynomial p(x, y, z) over F, we
get another polynomial p′(x, y, z) over F obtained by applying ϕ to every coefficient of p.
This then tells us that, treating p and p′ as functions from F3 to F, ϕ◦p = p′ ◦(ϕ×ϕ×ϕ).
However, the roots of ϕ ◦ p are exactly the roots of p, since ϕ is injective. This then
gives us a bijection between the roots of p′ and the roots of p, that bijection being exactly
ϕ× ϕ× ϕ. This observation leads us to the following theorem.

Theorem 14 Let F be a field and let f, g ∈ F[x, y, z] be polynomials such that (g, f)F
colorability is a knot invariant. Then for any field automorphism ϕ of F, if we define f ′

and g′ to be the polynomials obtained by the process above, then (g′, f ′)F colorability is a
knot invariant.

Proof. The proof follows in two steps. First, we will show that a knot projection admits
a (g, f)F coloring if and only if it admits a (g′, f ′)F coloring, using the bijection of roots
described above. Then we will use this to demonstrate (g′, f ′)F colorability is a knot
invariant.

Let ϕ be an automorphism of F, let f, g ∈ F[x, y, z] such that (g, f)F colorability is a
knot invariant, and let f ′ and g′ be as defined above. Let ρ be a projection of an oriented
knot admitting a valid (g, f)F coloring, meaning there is an assignment of an element in F
to each strand of ρ such that at least two distinct labels are used and at each left-handed
crossing, g(x, y, z) = 0, and at each right-handed crossing, f(x, y, z) = 0, where x refers
to the label on the overstrand, y to the label on the incoming understrand, and z to the
label on the outgoing understrand. By the previous observation, f(x, y, z) = 0 if and only
if f ′(ϕ(x), ϕ(y), ϕ(z)) = 0 with the analogous condition holding for g and g′, so consider
the labelling of the strands of ρ obtained by replacing their labels by their images under
ϕ. This labelling is then a (g′, f ′)F coloring. This coloring is valid as each crossing satisfies
the proper equation depending on the handedness, and because ϕ is an automorphism
it is injective, so given distinct labels α and β we see ϕ(α) 6= ϕ(β). Hence, at least two
distinct labels are used. Thus, if ρ admits a (g, f)F coloring, then it admits a (g′, f ′)F
coloring. The converse follows immediately as if ϕ is an automorphism, then ϕ−1 is an
automorphism and f is then the result of applying ϕ−1 to the coefficents of f ′, with the
analogous statement for g and g′. So by repeating the argument previously given, we see
if ρ admits a valid (g′, f ′)F coloring then it admits a valid (g, f)F coloring.
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Now, (g, f)F colorability is a knot invariant if and only if given any oriented knot K
and knot projection ρ of K, if ρ′ is an oriented knot projection that differs from ρ by the
application of a single Reidemeister move, then ρ admits a (g, f)F coloring if and only if
ρ′ does as well. But by the previous part, all projections of an oriented knot that admit
a (g, f)F coloring admit a (g′, f ′)F coloring, and so the previous statement implies ρ is
(g′, f ′)F colorable if and only if ρ′ is (g′, f ′)F colorable. Hence, (g′, f ′)F colorability is a
knot invariant. �

If we restrict our attention to fields F of characteristic p for some prime number p, then
there is a family of nice automorphisms which can be described as mapping polynomials
into polynomials. They are all obtained by taking powers of the map ϕ : F→ F such that
ϕ(a) = ap. This map is called the Fröbenius map, and a proof of its stated properties can
be found in Lang [4]. Since composing polynomials together is a polynomial, we get that
for any polynomial p ∈ F[x, y, z], p ◦ (ϕ × ϕ × ϕ) is another polynomial whose roots are
in bijection with those of p.

Corollary 15 Let F be a field of characteristic p 6= 0, and let f, g ∈ F[x, y, z] be polyno-
mials over F such that (g, f)F colorability is a knot invariant. Then for ϕ(a) := ap, the
polynomials f ′′(x, y, z) = f(ϕ(x), ϕ(y), ϕ(z)) and g′′(x, y, z) = g(ϕ(x), ϕ(y), ϕ(z)) have
(g′′, f ′′) colorability as a knot invariant.

Proof. Let F, ϕ, f , g, f ′′, and g′′ be as defined. Then, there is a bijection between the
roots of f and the roots of f ′′ obtained by mapping (α, β, γ) 7→ (ϕ−1(α), ϕ−1(β), ϕ−1(γ)).
The same map also defines a bijection between the roots of g and the roots of g′′. Hence,
any (g, f)F coloring defines a (g′′, f ′′)F coloring by taking each label in the (g, f)F coloring
and replacing it by ϕ−1, and the converse holds by replacing ϕ−1 by ϕ. Hence by mimicking
the proof of Theorem 14, we see that if (g, f)F colorability is a knot invariant, then so too
is (g′′, f ′′)F colorability. �

Example 16 Consider a field of characteristic 3, and note by the linear case f(x, y, z) =
g(x, y, z) = 2x− y − z has (g, f)F colorability as a knot invariant. The Fröbenius map is
then σ(a) = a3, and so composing on the right gives f ′(x, y, z) = g′(x, y, z) = 2x3−y3−z3.
By the corollary we see that (g′, f ′)F colorability is also a knot invariant. We can then
apply the corollary again to get the polynomial f ′′(x, y, z) = g′′(x, y, z) = 2x9−y9−z9 has
(g′′, f ′′)F colorability as a knot invariant.

We see from this example that we can recursively apply this corollary to get polynomials
of unbounded degree. We conclude this in the following corollary.

Corollary 17 Let F be a field of nonzero characteristic. Then there exists an infinite
family of pairs of polynomials over F whose colorability forms a knot invariant. Addition-
ally, this family has no upper bound on the degrees of its polynomials.

Proof. Let F have characteristic p, where p is some prime number. Then consider
polynomials of the form fn(x, y, z) = 2xp

n − ypn − zpn . We claim that for any positive
integer n, (fn, fn)F colorability is a knot invariant. However, this follows immediately by
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induction as when n = 1, f1(x, y, z) = 2x−y−z is the Fox-p colorability polynomial, and
thus (f1, f1)F colorability is a knot invariant. This also follows from the established linear
case, so we have established the base case for induction. However, if (fn, fn)F colorability
is a knot invariant, then note that

fn+1(x, y, z) = 2xp
n+1 − ypn+1 − zpn+1

= 2(xp
n

)p − (yp
n

)p − (zp
n

)p

shows that fn+1 is obtained by applying the Fröbenius map to each coordinate of fn. Hence
by the corollary (fn+1, fn+1)F colorability is also a knot invariant. Each fn is distinct, and
hence there is an infinite number of polynomials over F whose colorability forms a knot
invariant over F. Additionally, each fn has degree pn, and so the polynomials forming a
knot invariant have no upper bound on their degrees. �

6 Conclusion

Recall, (g, f)F colorings arose from generalizing Fox n-colorings in an attempt to produce
new knot invariants. One goal for further work could be to search for more strong pairs
of polynomials. Additionally, it would be desirable to find polynomials that provide
invariants which distinguish more knots than the Fox n-coloring does. In particular, the
Fox n-coloring does not distinguish torus knots from the unknot, so one might seek a pair
of strong polynomials that can color a torus knot.

The properties used to define strong pairs of polynomials come from a naive approach
to translate the Reidemeister moves into algebraic conditions that the polynomials must
satisfy. It is possible that these properties are too restrictive, and that there are pairs
of non-strong polynomials with colorability that is a knot invariant. One approach to
studying this larger class of polynomials could be to use algebraic geometry. With an
algebraic geometry approach, it may be possible to find a deeper geometric explanation
for the restrictiveness of our properties, or more ambitiously find less restrictive algebraic
conditions which maintain colorability as a knot invariant.
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