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Abstract - Let P be a set of n points on the real line and let k be a fixed positive integer.
Assume that for every x ∈ P the set {y ∈ P | |y − x| ≤ 1} of all points in P at distance at
most 1 from x has cardinality that is divisible by k. We show that necessarily n is divisible
by k.
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1 Introduction

An indifference graph is an undirected graph whose set of vertices is a finite multiset
of real numbers, and whose edges are those pairs of vertices which are within distance
one of each other, as real numbers. Since each vertex is within distance one of itself, we
have a loop at each vertex. Indifference graphs are an important class of graphs with
many applications to order theory and algebra among other areas, and are the subject of
considerable study (see, e.g., [3, 4, 5, 6, 9, 10, 12, 14]).
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Figure 1: An indifference graph

For graph G, we denote by n = |G| the order of |G|, i.e. the number of vertices of
G. For vertex v ∈ G, we denote by deg(v) the degree of v, i.e. the number of neighbors
of v in G, including v itself where we have a loop. Hence the example in Figure 1 has
deg(π) = 3.

Our main theorem is about indifference graphs where the degree of each vertex is
divisible by a fixed positive integer k:

Theorem 1.1 Let k be a fixed positive integer. Let G be an indifference graph. Assume
that for every vertex v of G we have k | deg(v). Then necessarily k | n.
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The case k = 2 in Theorem 1.1 was proved by Balof and appears in [8] in contrapositive
form. This special case motivated our study in the current paper. For completeness, we
provide the short standalone argument of the case k = 2 of Theorem 1.1 as it appears in
[8]. Our proof of the general case in Theorem 1.1 is of different nature and thus provides
a different (and slightly less elegant) proof of the case k = 2.

Theorem 1.2 (Balof in [8]) Let G be an indifference graph. Assume that for every
vertex v in G we have that deg(v) is even, then n is even.

Proof. Consider the graph G′ that is the same as G except that we remove all the loops
from G. We thus get a simple graph and the degree of each vertex is now odd. It is
a well known fact that every simple graph with an odd number of vertices must have a
vertex whose degree is even (because the sum of the degrees of all vertices in every graph
is even). Therefore, it must be that G′, and therefore also G, cannot have an odd number
of vertices. �

The proof of Theorem 1.1 is given in Section 2. We remark that the analogue to
Theorem 1.1 in two and higher dimensions is not true. To be more precise, one can define
the indifference graph also for finite sets P of points in higher dimension. Two points in
P form an edge iff they at distance at most 1 from each other. One can easily find even
in the two-dimensional plane sets P of points such that the degree of every vertex in the
indifference graph of P is divisible by some fixed positive integer k while n = |P | is not
divisible by k. To see this one can consider the set P of vertices of a regular n-gon in the
plane circumscribed in a circle of some radius say 10, where n is a (not too small) prime.
Then by symmetry the degrees of all vertices of the corresponding indifference graph are
equal and denote by k their common value. Then 1 < k < n and because n is prime, then
it is not divisible by k.

In Section 3 we suggest some further interesting problems in an attempt to generalize
Theorem 1.1.

2 Proof of Theorem 1.1.

We prove the theorem by induction on n = |G|. The statement is clearly true for 0 ≤
n ≤ k, since the hypothesis of k| deg(v) implies that n is either 0 or k, and the graph
is complete. Assume n > k. Let G be an indifference graph with n vertices x1 ≤ x2 ≤
· · · ≤ xn. Assume that for every vertex x of G the degree deg(x) is divisible by some
fixed positive integer k. For every vertex x, we define L(x) to be the vertex of smallest
index (between 1, n) connected to x; we similarly define R(x) to be the vertex of largest
index connected to x. Note that L,R are nondecreasing functions. For vertices xi, xj
with 1 ≤ i < j ≤ n, we say that the interval [xi, xj] is right-inseparable if there is no
vertex x with L(x) ∈ (xi, xj]. We say [xi, xj] is left-inseparable if there is no vertex x with
R(x) ∈ [xi, xj). We say that [xi, xj] is k-proper if k|(j − i+ 1).

The following proposition is the key tool in the proof of the theorem.

Proposition 2.1 There is a k-proper right-inseparable interval that is also left-inseparable.
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Proof. We first observe that there exists at least one k-proper right-inseparable interval,
namely [xn−k+1, xn]. If it were not right-inseparable, then there would be some vertex x
with L(x) > xn−k+1. Then L(xn) ≥ L(x) > xn−k+1, and consequently deg(xn) < k, a
contradiction.

Now, let [xi, xj] be the smallest (by length) k-proper right-inseparable interval. We
claim that it is also left-inseparable. Suppose for the purpose of contradiction that it is not
left-inseparable. Hence there is some vertex x with R(x) = xa ∈ [xi, xj). We first observe
that R(xa) = R(xa+1) since otherwise we must have L(R(xa+1)) = xa+1 violating the
right-inseparable hypothesis on [xi, xj]. Next, observe that because R(x) = xa ∈ [xi, xj)
we must have L(xa) ≤ x < L(xa+1).

Choose vertex xb maximal so that xb < L(xa+1). Therefore, xb+1 = L(xa+1). Set
S = [L(xa), xb]. Notice that S is k-proper. This is because the neighborhood of xa is
[L(xa), R(xa)] and it contains the neighborhood of xa+1 which is [xb+1, R(xa)]. S is the set
difference of these two neighborhoods. We notice further that S is right-inseparable. This
is because otherwise there is some vertex y with L(y) ∈ (L(xa), xb] ⊂ (L(xa), L(xa+1)).
By the monotonicity of the function L, this leads to a < y < a + 1, which is impossible.
Finally, note that xi ≤ xa ≤ L(xa) + 1 < xb + 1 < xa+1 ≤ xj, so |xj − xi| > |xb − L(xa)|.
Therefore, S is a k-proper right-inseparable interval of smaller length than [xi, xj]. This
is a contradiction to the minimality of [xi, xj]. �
Proof of Theorem 1.1. By Proposition 2.1, we get vertices xi, xj, such that [xi, xj]
is a k-proper right-inseparable and also left-inseparable interval. Because [xi, xj] is left-
inseparable and right-inseparable, every vertex in G is either connected to every one of
{xi, xi+1, . . . , xj}, or to none of them. Therefore, the indifference graph G′ whose vertices
are {x1, . . . , xn} \ [xi, xj] also satisfies that the degree is every vertex of G′ is in kN0. By
induction hypothesis |G′| is divisible by k. The interval [xi, xj] is k-proper meaning that
(j − i + 1) is divisible by k. Consequently, |G| = |G′| + (j − i + 1) is also divisible by k,
which completes the proof of the theorem. �

3 Further Problems and Concluding Remarks.

In this section, we suggest an interesting way of generalizing the result in Theorem 1.1.
We recall the notion of a numerical monoid. A numerical monoid is a subset of

the nonnegative integers N0, containing 0, closed under addition. A numerical monoid
that is also cofinite is called a numerical semigroup. Both of these are important objects
(particularly numerical semigroups), themselves well-studied (see, e.g., [1, 2]). One simple
example for a numerical monoid is the set kN0 = {km | m ∈ N ∪ {0}}, where k is a fixed
integer.

Given a graph G and a subset S of the nonnegative integers, we say that G respects
S if:

(∀v ∈ G, deg(v) ∈ S)→ |G| ∈ S.
Note that G can respect S vacuously, if the degree of some vertex of G does not appear

in S. If instead all vertex degrees of G appear in S, then the order of G must also appear
in S, for G to respect S.
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By Ja, bK we mean the integers between a and b, inclusive; similarly, by Ja,∞M we mean
all integers greater than or equal to a. For any set S ⊆ N0, by kS we mean {kn : n ∈ S}.
Note that the example in Figure 1 respects 2N0 (vacuously), respects J2,∞M and J2, 5K,
but does not respect J2, 4K.

In the new terminology, a restatement of Theorem 1.1 is that every indifference graph
respects kN0 for every positive integer k.

In the spirit of this restatement of Theorem 1.1 we raise the following two problems.

Problem 1 Is it true that every indifference graph respects every numerical monoid?

Problem 2 Is it true that every indifference graph respects every numerical semigroup?

Because a numerical semigroup is a numerical monoid, an affirmative answer to Prob-
lem 1 implies an affirmative answer to Problem 2. We observe that the converse is also
true. An affirmative answer to Problem 2 implies an affirmative answer to Problem 1.
This is because a graph G respect S if and only if it respects S ∪ [|G|+ 1,∞) and notice
that S ∪ [|G|+ 1,∞) is already a numerical semigroup.

We note some basic observations in the following proposition.

Proposition 3.1 Let G be a graph, S, S ′ be numerical monoids, and a ∈ N0.

1. Every indifference graph respects 0N0 = {0}.

2. If G respects S, then G also respects S ∪ Ja,∞M.

3. If G respects S and S ′, then G also respects S ∩ S ′.

4. If G respects S, then G also respects S \ J1, a+ 1K.

Proof. (1) Every vertex in an indifference graph has degree at least one, since we assume
it has a loop. Hence, all nonempty graphs respect 0N0 vacuously, and the empty graph
respects it nonvacuously.
(2) Suppose all vertices of G have their degree in S∪Ja,∞M. If any vertex v has deg(v) /∈ S,
then deg(v) ≥ a; in this case, |G| ≥ a (looking at the neighbors of v alone), and so
|G| ∈ S ∪ Ja,∞M. Otherwise, all vertices v ∈ G have deg(v) ∈ S. Since G respects S by
hypothesis, we have |G| ∈ S ⊆ S ∪ Ja,∞M.
(3) Suppose all vertices of G have their degrees in S ∩S ′. Then, in particular, all vertices
of G have their degrees in S. Since G respects S, |G| ∈ S. Repeating for S ′ we find
|G| ∈ S ′; hence |G| ∈ S ∩ S ′.
(4) By (1) and (2), G respects S ′ = {0} ∪ Ja+ 2,∞M; now apply (3). �

Combining Theorem 1.2 and 3.1 we get the following result.

Corollary 3.2 Let t ∈ N be odd. Every indifference graph respects the numerical semi-
group 〈2, t〉 = {2x+ ty : x, y ∈ N0}.

Proof. 〈2, t〉 = 2N0 ∪ Jt,∞M. �
We can move from one numerical monoid to another with the following observation.
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Theorem 3.3 Let S be a numerical monoid and k a positive integer. Suppose that every
indifference graph respects kS. Then every indifference graph respects S.

Proof. Let G be an indifference graph with deg(v) ∈ S for all v ∈ G. We produce
a new indifference graph G′ which has the same vertices as G, except that every vertex
is repeated k times. Hence deg(v) ∈ kS for all v ∈ G′. Since G′ respects kS, we have
|G′| ∈ kS. Hence |G| ∈ S. �

In particular, Theorem 3.3 tells us that if a numerical monoid T is respected by all
indifference graphs, we can set k = gcd(T ). Then T = kS for a numerical monoid S with
gcd(S) = 1, and now all indifference graphs respect S. It is well-known (e.g. [1]) that
a numerical monoid with no common factor is a numerical semigroup, so in fact S is a
numerical semigroup.

We turn briefly to numerical semigroups. Given a numerical semigroup S, its multi-
plicity m(S) is the smallest positive integer contained in S. Its Frobenius number F (S)
is the largest integer not contained in S. Let S denote the set of numerical semigroups
S such that 2m(S) > F (S). This set S is independently interesting (see, e.g. [7, 11]).
Further, S has been shown (in [13]) to be asymptotically a strictly positive fraction of all
numerical semigroups.

Theorem 3.4 Let S ∈ S. Then every indifference graph respects S.

Proof. Let G be an indifference graph with deg(v) ∈ S for all v ∈ G. Set n = |G|, and
choose a, b such that R(x1) = xa and L(xn) = xb. Since every vertex degree must be at
least m(S), we have a ≥ m(S) and b ≤ n−m(S) + 1. We have two cases: if b > a, then
n −m(S) + 1 > m(S) and hence n ≥ 2m(S) > F (S). Since n > F (S) and F (S) is the
last integer missing from S, we must have n ∈ S. If instead b ≤ a, then xa is connected
to all vertices, namely deg(xa) = n, and hence in this case also n ∈ S. �

Our last observation is that indifference graphs of sets of small diameter, respect every
numerical monoid.

Theorem 3.5 Let G be an indifference graph with vertices x1 < . . . < xn. Suppose that
G has diameter is at most 2, that is xn−x1 ≤ 2. Then G respects every numerical monoid
S.

Proof. Let S be a numerical monoid and suppose that for every vertex v of G we have
deg(v) ∈ S. In the notation of the proof of Theorem 1.1, if R(x1) < L(xn), then there is
no common neighbor to x1 and xn. On the other hand every vertex in G is at distance at
most 1 from either x1, or xn. Therefore, |G| = deg(x1) + deg(xn) ∈ S.

It remains to consider the case R(x1) ≥ L(xn). In this case every vertex in G is a
neighbor of R(x1) and therefore |G| = deg(R(x1)) ∈ S. �
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