
An Examination of Linear Combinations of

Skew-Adjoint Type Algebraic Curvature Tensors

J. Brundan∗

Abstract In this paper a new potential invariant of algebraic curvature tensors, the sig-
nature, will be examined. Furthermore, linear combinations of skew-adjoint type algebraic
curvature tensors will be thoroughly examined so as to provide some insight into the possible
forms of algebraic curvature tensors.

Keywords : algebraic curvature tensors; signature conjecture

Mathematics Subject Classification (2020) : 15A69; 53B21

1 Introduction

Algebraic curvature tensors come in a variety of different forms, and there are a variety
of different properties that are of interest. In fact, it can often be difficult to distinguish
between two algebraic curvature tensors, hence the development of invariants that can
distinguish between different algebraic curvature tensors is useful. We will be examining
a new potential invariant, the signature. Furthermore, the study of linear combinations
of skew-adjoint type algebraic curvature tensors turns out to be quite interesting as it
provides insight to the possible forms of such algebraic curvature tensors and differs from
the self-adjoint case in several subtle ways.

We begin with some basic definitions along with some notes on notation. [4] provides
a much more detailed examination of generic algebraic curvature tensors and their prop-
erties, and is a good starting point for those wishing to learn more about this subject.
We will then proceed to examine the signature as a potential invariant. Next we will look
at the kernel of linear combinations of skew-adjoint type algebraic curvature tensors and
discuss decomposability. Finally we will discuss η(R), which is a measurement of how
efficiently one can express an algebraic curvature tensor.

Definition 1.1 On any vector space V , an inner product is a map φ : V × V → R with
the following properties:

1) multilinear entries;
2) φ(u, v) = φ(v, u) for all u, v ∈ V ;
3) φ(v, v) ≥ 0 for all v ∈ V , with equality if and only if v = 0 (positive definite);
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Definition 1.2 On any vector space V , algebraic curvature tensor is a map R : V ×V ×
V × V → R with the following properties:

1) multilinear in all four entries;
2) R(x, y, z, w) = −R(y, x, z, w);
3) R(x, y, z, w) = R(z, w, x, y);
4) R(x, y, z, w) +R(x,w, y, z) +R(x, z, w, y) = 0;

We will now introduce some basic properties of algebraic curvature tensors.

Definition 1.3 The kernel of an algebraic curvature tensor R, denoted Ker(R), is the
set of all x ∈ V such that R(x, y, z, w) = 0 for any y, z, w ∈ V .

We can use Properties 2 and 3 of algebraic curvature tensors to show that for any x ∈
Ker(R) and y, z, w ∈ V , R(x, y, z, w) = R(y, x, z, w) = R(y, z, x, w) = R(y, z, w, x) = 0
[2].

Given a manifold with connection M and a point p on M , one can extract the tangent
space V at p, an algebraic curvature tensor defined on V , and, provided the manifold
had a metric, an inner product φ. The tuple (V, φ,R) is called a model space, and the
pair (V,R) is called a weak model space. Understanding of the model space at a point
helps understand the manifold at the point, hence a proper understanding of algebraic
curvature tensors defined on a vector space with an inner product is important to a
proper understanding of manifolds. One important property a model space, or a weak
model space, can have is decomposability.

Definition 1.4 A model space (V, φ,R) is decomposable if there exist sub-vector spaces
V1 and V2 such that V1

⊕
V2 = V , and (V1, φ1, R1)

⊕
(V2, φ2, R2) = (V, φ,R), where each

φi and Ri are respectively φ and R restricted to Vi . Similarly, a weak model space (V,R)
is decomposable if there exist sub-vector spaces V1 and V2 such that V1

⊕
V2 = V , and

(V1, R1)
⊕

(V2, R2) = (V,R).

From now on we fix some vector space V of dimension n and an inner product φ
acting on V . The set of all possible algebraic curvature tensors acting on V is denoted by
A(V ). There is a special suspace of algebraic curvature tensors, called canonical algebraic
curvature tensors, which are known to be a spanning set of A(V ). Canonical algebraic
curvature tensors are associated with linear transformations, and there are two basic
types. Firstly we have those defined with self-adjoint linear transformations.

Definition 1.5 Let T : V → V be a self-adjoint linear transformation. The canonical
algebraic curvature tensor RS

T : V × V × V × V → R is defined as follows:

RS
T (x, y, z, w) = φ(Tx,w)φ(Ty, z)− φ(Tx, z)φ(Ty, w)

Such a canonical algebraic curvature tensor is of the self-adjoint type and is referred to
as such.

The second flavor of canonical algebraic curvature tensors are defined with skew-adjoint
linear transformations.
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Definition 1.6 Let T : V → V be an skew-adjoint linear transformation. The canonical
algebraic curvature tensor RT : V × V × V × V → R is defined as follows:

RT (x, y, z, w) = φ(Tx,w)φ(Ty, z)− φ(Tx, z)φ(Ty, w)− 2φ(Tx, y)φ(Tz, w)

Such a canonical algebraic curvature tensor is of the skew-adjoint type and is referred to
as such.

By picking a basis for V we can identify V with Rn and T with a n×n matrix A. It is
convenient to use matrices for calculations, so from now on we will fix a basis {e1, . . . , en}
of V and for a self-adjoint n×n matrix A the expression RS

A denotes the self-adjoint type
canonical algebraic curvature tensor RS

T where the self-adjoint linear transformation T
is determined by the matrix A and this choice of basis. Similarly RA denotes the skew-
adjoint type canonical algebraic curvature tensor RT where T is the skew-adjoint linear
transformation determined by the skew-adjoint matrix A. RS

A and RA are meaningless if
the matrix A is not self-adjoint or skew-adjoint respectively.

One key property of canonical algebraic curvature tensors is: given any self-adjoint
matrix A, α ∈ (R), and x, y, z, w ∈ V , RαA(x, y, z, w) = α2RA(x, y, z, w)[4]. One can
easily use the definition to expand the left hand side and demonstrate this:

RαA(x, y, z, w) = φ(αAx,w)φ(αAy, z)− φ(αAx, z)φ(αAy,w)− 2φ(αAx, y)φ(αAz,w)

= α2φ(Ax,w)φ(Ay, z)− α2φ(Ax, z)φ(Ay,w)− 2α2φ(Ax, y)φ(Az,w)

= α2RA(x, y, z, w).

It should be noted that both types (Definition 1.5 and Definition 1.6) form spanning
sets of A(V )[4]. Hence the notion of the least number of each type of canonical curvature
tensor required to express any curvature tensor R is of interest.

Definition 1.7 For any R ∈ A(V ), ν(R) := min{k|
∑k

i=1 αiR
S
Ai

= R}, where each αi is
an element of V , and RS

Ai
is a self-adjoint type canonical algebraic curvature tensor, as

in Definition 1.5.

Definition 1.8 For any R ∈ A(V ), η(R) := min{k|
∑k

i=1 αiRAi
= R}, where each αi is

an element of V , and RAi
is a skew-adjoint type canonical algebraic curvature tensor as

in Definition 1.6.

We can also consider ν and η as functions of n, the dimension of the vector space,
instead of individual algebraic curvature tensors.

Definition 1.9 For any vector space V of dimension n,

η(n) := max
R∈A(V )

{η(R)}

Similarly
ν(n) := max

R∈A(V )
{η(R)}
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This paper will primarily focus on this skew-adjoint type of canonical algebraic cur-
vature tensor, as the self-adjoint type is fairly well understood. This paper will also
serve to highlight some of the similarities and differences between the two types. For
instance, in [4] Gilkey shows that bn

2
c ≤ ν(n) ≤ n(n+1)

2
, whereas in [5] Lopez shows that

η(n) ≤ n2(n2−1)
12

−
(
n
2

)
. Clearly there is a big discrepancy between the two types here;

n(n+1)
2

is much less than n2(n2−1)
12

−
(
n
2

)
for large n.

1.1 Notation

Throughout this paper R will always be an algebraic curvature tensor, RA will always be
a canonical algebraic curvature tensor of the skew-adjoint type, Definition 1.6 (so A is
assumed to be skew-adjoint), and RS

A will always be a canonical algebraic curvature tensor
of the self-adjoint type, definition 1.5 (so A is assumed to be self-adjoint). Occasionally
Rijkl will be used to denote R(ei, ej, ek, el) where each es is a basis vector of V .

There is one more useful piece of notation to introduce which simplifies an important
definition. We will sometimes replace individual entries of a matrix with 2 × 2 blocks
when all of the other entries are 0. For instance:

A =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

2

 (1)

where αi is the 2× 2 block:

[
0 ai
−ai 0

]
. In the event that dim(V ) is odd there is an extra

row and column of zeros, see Definition 1.10. When we write down such a matrix we
really mean that A = α1

⊕
α2

⊕
. . .

⊕
αn

2
. This brings us to the definition.

Definition 1.10 A square skew-adjoint matrix A is called block diagonalizable if there
exists a basis in which the only non-zero entries of A are the i, i+ 1, and i+ 1, i entries,
where i must be odd.

Note that if A is block diagonal, then

A =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

2

 or if A has odd dimensions A =


α1 0 . . . 0 0
0 α2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αn
2

0

0 0 . . . 0 0


for some αis as described in Equation (1).
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2 Signature Conjecture

In this section we will investigate the extent to which the expression of any algebraic
curvature tensor R as a linear combination of canonical algebraic curvature tensors of the
skew-adjoint type is unique. Our first remark has to be that any linear combination of
skew-adjoint type curvature tensors is definitely not unique. The polarization identity [4]:

2RA + 2RB = RA−B +RA+B = R

provides an easy example of two linear combinations of different skew-adjoint type curva-
ture tensors that both equal the same algebraic curvature tensor. One can come up with
many other such examples.

However; there might still be something we can say on this subject. First note that
any linear combination of skew-adjoint type curvature tensors:

∑m
i=1 αiRAi

can be written
as the sum or difference of m skew-adjoint type curvature tensors:

∑m
i=1±RBi

where

Bi =
√
|αi|Ai, since |αi|RAi

= R√|αi|Ai
. We can now more easily define the signature of

a linear combination of skew-adjoint type curvature tensors:

Definition 2.1 The signature of a linear combination of skew-adjoint type curvature
tensors:

∑m
i=1 αiRAi

=
∑m

i=1±RBi
is the ordered pair (p, q) where p is the number of

positive signs in the sum, q is the number of negative signs, and Bi =
√
|αi|Ai.

In [7], Ragosta, proposes the following conjecture about the signature of linear combina-
tions of self-adjoint type canonical algebraic curvature tensors:

Conjecture 2.2 If R =
∑m

i=1±RS
Ai

, ν(R) = m, and the rank of each RS
Ai

is greater
than 3, then any other linear combination of m canonical algebraic curvature tensors
of the self-adjoint type that equals R must preserve the signature. Put more plainly, if∑m

i=1±RS
Ai

=
∑m

i=1±RS
Bi

is a minimal expression, and the rank of each Ai and Bi is
greater than 3, then both sums have the same number of positive and negative terms.

We can adapt this to the skew-adjoint type by replacing each self-adjoint matrix a
skew-adjoint one, and getting rid of the rank greater than 3 restriction:

Conjecture 2.3 If R =
∑m

i=1±RAi
and η(R) = m, then any other linear combination

of m skew-adjoint type curvature tensors that equals R must preserve the signature.

Note that minimality is a very important assumption; the signature of
∑m

i=1±RAi
can

only equal the signature of
∑h

i=1±RBi
if m = h. The rest of the section is devoted to

proving the signature conjecture for the skew-adjoint type when η(R) = 2. We start with
a couple lemmas.

Lemma 2.4 Let A and B be the following non zero block diagonalized skew-adjoint ma-
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trices:

A =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

2

 B =


β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...
0 0 . . . βn

2


where αi is the 2× 2 block:

[
0 ai
−ai 0

]
, and βi is the 2× 2 block:

[
0 bi
−bi 0

]
. If aibj = biaj

for all i and j, and there exists at least one i such that both ai and bi are non zero, then
A and B are multiples of each other. Additionally, A = ai

bi
B for any i where both ai and

bi are non zero.

Proof. Pick any i such that ai and bi are non zero. Since aibj = biaj for all j, we can

divide by aibi so
bj
bi

=
aj
ai

. Now

ai
bi
βj =

[
0 bj

ai
bi

−bj aibi 0

]
=

[
0 ai

bj
bi

−ai bjbi 0

]
=

[
0 ai

aj
ai

−ai ajai 0

]
= αj

Hence A and B are multiples, and A = ai
bi
B. �

From [3] we have the following lemma:

Lemma 2.5 if
∑m

i=1RAi
= RB, where all Ai and B are skew adjoint, then all the Ais

are simultaneously block diagonalizable.

We now propose the following theorem which will be instrumental to proving the
signature conjecture for η(R) = 2, and has even more far reaching implications.

Theorem 2.6 If
∑m

i=1RAi
= RB, where each Ai and B are skew adjoint matrices, then

there exists real numbers ci such that Ai = ciB, or in other words all the matrices involved
are multiples of one another.

Proof. We know that all the Ais and B are simultaneously block diagonalizable, so let’s
start by picking a basis, {e1, . . . , en} such that all the Ais and B are block diagonalized.
We can now write down each matrix:

Ai =


αi1 0 . . . 0
0 αi2 . . . 0
...

...
. . .

...
0 0 . . . αin

2

 B =


β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...
0 0 . . . βn

2


where αij is the 2× 2 block:

[
0 aij
−aij 0

]
, and βj is the 2× 2 block:

[
0 bj
−bj 0

]
. Note that

if n is odd there are only n−1
2

blocks and an extra row and column of zeros in each matrix.
Since all the matrices are block diagonalizable, we can re-order the basis so that the nth

row and column are identically zero in all the matrices.
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Clearly any number of the Ais could be zero without changing the overall sum, but in
that case Ai = ciB where ci = 0, so from now on we will assume that each Ai 6= 0. The
only issue with this assumption would be if every Ai = 0, but in that caseB = 0, so Ai = B
for every i and we may proceed with our assumption. Now we will consider

∑m
i=1RAi

.
We are assuming that the sum equals RB for some skew-adjoint matrix B that we have
block diagonalised with our choice of basis. Since algebraic curvature tensors can be
uniquely determined by their output on a basis, we will look at RB(ek, el, el, ek). We may
assume that k < l since RB(ek, el, el, ek) = −RB(ek, el, el, ek) and RB(ek, ek, ek, ek) = 0.
RB(ek, el, el, ek) =

∑m
i=1RAi(ek,el,el,ek), and Ai(ek, el, el, ek) = 0 for all k and l except when

l is even and k = l − 1, in which case Ai(ek, el, el, ek) = 3a2i l
2

. In which case we conclude

that b2l
2

=
∑m

i=1 a
2
i l
2

.

Going through the other cases, we find that the only other permutation of basis vectors
ek, el, er, es such that RB(ek, el, er, es) is non zero is when l and s are distinct and even,
k = l − 1, and r = s − 1. In this case RB(el−1, el, es−1, es) = −2

∑m
i=1 ai l

2

ai s
2
. But

RB(el−1, el, es−1, es) = −2b l
2
b s

2
, so b l

2
b s

2
=
∑m

i=1 ai l
2

ai s
2
.

We have already shown that b2l
2

=
∑m

i=1 a
2
i l
2

, so we can now combine these two equa-

tions:

b2l
2

b2s
2

=

(
m∑
i=1

a2i l
2

)(
m∑
i=1

a2i s
2

)
=

(
m∑
i=1

ai l
2

ai s
2

)(
m∑
i=1

ai l
2

ai s
2

)
= (b l

2
b s

2
)2

If we expand, we can cancel all the terms of the form a2i l
2

a2i s
2

, and move everything to

the left side:
m∑
i=1

m∑
j=1,j 6=i

a2i l
2

a2j s
2

−
m∑
i=1

m∑
j=1,j 6=i

ai l
2

ai s
2
aj l

2

aj s
2

= 0

Note that a2i l
2

a2j s
2

+ a2j l
2

a2i s
2

− ai l
2

ai s
2
aj l

2

aj s
2
− aj l

2

aj s
2
ai l

2

ai s
2

= (ai l
2

aj s
2
− aj l

2

ai s
2
)2. Hence:

m∑
i=1

m∑
j=1,j 6=i

a2i l
2

a2j s
2

−
m∑
i=1

m∑
j=1,j 6=i

ai l
2

ai s
2
aj l

2

aj s
2

=
1

2

m∑
i=1

m∑
j=1,j 6=i

(ai l
2

aj s
2
− aj l

2

ai s
2
)2 = 0

Note that the factor of 1
2

after the first equality since we have counted each of the terms
twice. This means that ai l

2

aj s
2

= aj l
2

ai s
2

for all i and j 6= i. Now let i = m, pick any

j < m, and choose any l such that am l
2

6= 0. Such an l must exist since we have assumed

that each Ai 6= 0. Since Aj 6= 0, we can also find an s such that aj s
2
6= 0. We know that

am l
2

aj s
2

= aj l
2

am s
2
, and we now know that am l

2

aj s
2
6= 0. Therefore aj l

2

6= 0. We can now

apply Lemma 2.1, which tells us that Aj =
aj l

2

am l
2

Am. So we can now simplify the sum:

m∑
j=1

RAi
=

m∑
j=1

(
aj l

2

am l
2

)2

RAm = RAm

m∑
j=1

(
aj l

2

am l
2

)2

= B
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Therefore RAm is a multiple of B, and since each RAi
is a multiple of RAm , each RAi

must also be a multiple of B.
�

This theorem is extremely useful and lets us prove some interesting results.

Corollary 2.7 If
∑m

i=1RAi
= R, and η(R) = m and m > 1, then there do not exist n×n

skew-adjoint matrices B and Cj for 1 ≤ j < m such that
∑m

i=1RAi
= RB −

∑m−1
j=1 RCj

.

Proof. We will consider the m skew-adjoint n× n matrices Ai, the algebraic curvature
tensor R =

∑m
i=1RAi

with η(R) = m, and any other m skew-adjoint n × n matrices
B and Cj. We will assume, for a contradiction, that

∑m
i=1RAi

= RB −
∑m−1

j=1 RCj
.

Therefore
∑m

i=1RAi
+
∑m−1

j=1 RCj
= RB, so we can apply Theorem 2.2 which tells us that

all the matrices involved are multiples of B. Therefore
∑m

i=1RAi
is also a multiple of RB.

Since R =
∑m

i=1RAi
must be a multiple of RB, η(R) = 1. This is a contradiction, as

η(R) = m > 1. �
We can use Corollary to conclude that the Signature Conjecture 2.0.2 is true when

η(R) = 2.

Corollary 2.8 The Signature Conjecture 2.0.2 is true when η(R) = 2, i.e. if A, B, are
skew-adjoint n× n matrices, and RA +RB = R is a minimal expression of R, then there
do not exist skew-adjoint n× n matrices C and D such that RA +RB = RC −RD.

Proof. This is just a specific case of the previous corollary. Simply let m = 2, A = A1,
B = A2, C = B, and D = C1 and the result follows. �

3 The Kernel of RA ±RB

We start this section by introducing some of the work that has been done on the kernel
of canonical algebraic curvature tensors. In [4], Gilkey proves that Ker(RA) = Ker(A),
and Ker(RS

A) = Ker(A) if the rank of A 6= 1. Furthermore, in [8], Williams proves that
dim(Ker(RS

A ±RS
B)) = 0, 1, or n if the eigenvalues of A are positive.

In this section we hope to achieve a similar result for Ker(RA ± RB). Hence the
following theorems.

Theorem 3.1 If Ak, for 1 ≤ k ≤ m are skew-adjoint matrices and the algebraic curvature
tensor R equals

∑m
k=1RAk

, then the kernel of R is
⋂
k

Ker(Ak)

Proof. Let akij represent the ijth entries of the matrix Ak. It is clear that Ker(R) ⊃⋂
k

Ker(RAk
). Hence if Ker(R) = {0}, then

⋂
k

Ker(RAk
) = {0} as well.

The other case, where Ker(R) 6= {0}, is more interesting. We will start by picking
a basis, {e1, e2, . . . , el} of Ker(R), then extend this basis to a basis of the whole space
{e1, . . . , el, el+1, . . . , en}, and write down the matrices A and B in this new basis. We will
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now consider some basis vector ei ∈ Ker(R), and any other basis vector ej.

0 = R(ei, ej, ej, ei) =
m∑
k=1

RAk
(ei, ej, ej, ei) = 3

m∑
k=1

a2kij (2)

So a2kij = 0 for all k. Since ej was an arbitrary basis vector this means that akij = 0 for

every j whenever ei ∈ Ker(R). Hence ei ∈ Ker(RAk
) whenever ei ∈ Ker(R). Therefore

Ker(R) =
⋂
k

Ker(RAk
). �

Unfortunately this proof does not work in an expression of the form RA −RB, as the
introduction of the minus sign means we would get aij = ±bij instead of aij = bij = 0 from
Equation (2). Hence we will have to work a lot harder to prove the following theorem.

Theorem 3.2 Suppose R is an algebraic curvature tensor, and A and B are skew-adjoint
matrices such that RA − RB = R. Then either the kernel of R is Ker(RA) ∩Ker(RB),
or B = ±A so R = 0 and has kernel equal to V .

Proof. As before, let aij and bij represent the ijth entries of the matrices A and B, and
notice that if Ker(R) = {0}, then Ker(RA) ∩Ker(RB) = {0} as well. In the case that
Ker(R) 6= {0}, pick a basis {e1, e2, . . . , ek} of Ker(R), extend this basis to a basis of the
whole space {e1, . . . , ek, ek+1, . . . , en}, and write down the matrices A and B in this new
basis as before. Now let ei be a specific basis vector of Ker(R), and let ej, ek, el be any
other distinct basis vectors.

0 = R(ei, ej, ej, ei) = RA(ei, ej, ej, ei)−RB(ei, ej, ej, ei) = 3a2ij − 3b2ij

Hence aij = ±bij. Since j was arbitrary, we also know that aik = ±bik and ail = ±bil

0 = R(ei, ej, ek, ei) = RA(ei, ej, ek, ei)−RB(ei, ej, ek, ei) = 3aijaik − 3bijbik

Since aij = ±bij and aik = ±bik, this tells us that either aij = bij and aik = bik or
aij = −bij and aik = −bik. If it happens that aij = −bij, without loss of generality we
can just replace the matrix B with −B, since RB = R−B. Hence we will assume that
aij = bij, aik = bik, and ail = bil from now on.

Now there are 2 cases to consider. Either aij = bij = 0 for all j, then we must have
that ei ∈ Ker(RA) and ei ∈ Ker(RB), or there exists a j such that aij 6= 0, in which case
we will let j be such that aij 6= 0 and continue the proof.

0 = R(ej, ei, ek, ej) = RA(ej, ei, ek, ej)−RB(ej, ei, ek, ej) = 3ajiajk − 3bjibjk

So ajiajk = bjibjk. We have chosen j such that aij 6= 0, and we know that aij = bij so we
can divide: ajk = bjk.

0 = R(ei, ej, ek, el) = ailajk − aikajl − 2aijakl − bilbjk + bikbjl + 2bijbkl

0 = R(ei, el, ej, ek) = −aikajl + aijakl − 2ailajk + bikbjl − bijbkl + 2bilbjk
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Subtracting yields: 0 = 3ailajk − 3aijakl − 3bilbjk + 3bijbkl

But we know that aij = bij, ail = bil, and ajk = bjk. Hence 0 = aij(akl − bkl), but aij 6= 0,
so akl = bkl. Since k and l were arbitrary, and each of aij = bij, aik = bik, and ail = bil,
we can conclude that A = B. But we might have switched the sign of B, so A = ±B.

Thus we have shown that either ei ∈ Ker(RA) ∩ Ker(RB), or A = ±B so R =
RA −RB = 0 �

When m = 2 in Theorem 3.1, Ker(RA+RB) = Ker(A)∩Ker(B). If we combine this
result with Theorem 3.2, we see that if Ker(A) ∩ Ker(B) = {0}, then dim(Ker(RA ±
RB)) = 0, n. This contrasts with the self-adjoint case, where [8] proves that dim(Ker(RS

A±
RS
B)) = 0, 1, n if the eigenvalues of A are positive.

4 Decomposability of RA ±RB

Here we want to study the decomposability of model spaces of the form (V, φ,RA ±RB);
however, the inclusion of an inner product adds an extra layer of complexity which detracts
somewhat from the focus on canonical algebraic curvature tensors. Hence we will study
the decomposability of weak model spaces of the form (V,RA ±RB).

It is easy to show that if an algebraic curvature tensor R has a non-trivial kernel, then
the weak model space (V,R) is decomposable. In fact, it can at least be decomposed into
Ker(R) and V ∩Ker(R) ∪ {0}, as well as any subspace of Ker(R), and depending on R
it could be decomposed into other subspaces.

Moving away from general algebraic curvature tensors, it is known that (V,RA) can
only be decomposed if A has non-trivial kernel [4]. Clearly if RA and RB share a common
kernel, then RA+RB will have non-zero kernel by Theorem 3.1 and thus is decomposable.
Thus we want to investigate the case where RA and RB do not necessarily share a common
kernel.

Theorem 4.1 If an algebraic curvature tensor R equals
∑m

k=1RAk
for some skew-adjoint

linear maps Ak, and the weak model space (V,R) can be decomposed into (V1, R) and
(V2, R), then all the linear maps Ak preserve the vector spaces V1 and V2. i.e. Ak(V1) ⊂ V1
and Ak(V2) ⊂ V2.

Proof. Let {e1, e2, . . . , ep} be a basis of V1 and {f1, f2, . . . , fq} be a basis of V2.
{e1, e2, . . . , ep, f1, f2, . . . , fq} is a basis of V . We will express each Ak in this basis. Now
let us consider R(ei, fl, fl, ei). Since R is decomposable, R(ei, fl, fl, ei) = 0; however, it
also equals

∑m
k=1Ak(ei, fl, fl, ei) = 3

∑m
k=1 a

2
kil

. Hence we conclude that akil = 0 when-
ever i ≤ p and l > p. This means that each Ak must preserve V1 and V2, since now
Akei =

∑n
l=1 akliel and Akfi =

∑m
l=n aklifl. �

Theorem 4.2 If an algebraic curvature tensor, R, equals RA−RB for some skew-adjoint
linear maps A and B, and the weak model space (V,R) can be decomposed into (V1, R)
and (V2, R) where V1 has dimension n and V2 has dimension m, then there exists a basis
of V such that the entries of A and B satisfy the following properties:
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1) aik = δbik for all i ≤ n and k > n, where δ is either 1 or −1
2) given any i ≤ n, either aik = bik = 0 for all k > n, or aij = δbij for all j ≤ n
3) aijakl = bijbkl for all i, j ≤ n and k, l > n

Note that it is still possible for A and B to preserve V1 and V2, but this is not necessarily
the case as it was for R = RA +RB.
Proof. As before, let {e1, e2, . . . , en} be a basis of V1 and {f1, f2, . . . , fm} be a basis of
V2. So {e1, e2, . . . , en, f1, f2, . . . , fm} is a basis of V . Express A and B as matrices in this
basis, and consider R(ei, fk, fk, ei):

0 = R(ei, fk, fk, ei) = RA(ei, fk, fk, ei)−RB(ei, fk, fk, ei) = 3a2ik − 3b2ik

Hence aik = ±bik for all i ≤ n and k > n. Now let’s consider R(ei, fk, fl, ei):

R(ei, fk, fl, ei) = 3ailaik − 3bilbik = 0

Since ail = ±bil and aik = ±bik, ailaik = bilbik if and only if aih = δbih for all i ≤ n and
h > n where δ is either 1 or −1. This proves 1). With this in mind we can now consider
R(ei, ej, fk, ei):

R(ei, ej, fk, ei) = 3aikaij − 3bikbij = 0

Since aik = δbik, either aik = 0 for all k > n, or there exists one k with aik 6= 0 so we can
divide to get aij = δbij for all j ≤ n. This proves 2).

To prove 3) we need to consider R(ei, ej, fk, fl):

R(ei, ej, fk, fl) = ailajk − aikajl − 2aijakl + bilbjk − bikbjl − 2bijbjl = 0

We know that ailajk − bilbjk = 0 and −aikajl + bikbjl = 0, so aijakl = bijbkl for all i, j ≤ n
and k, l > n. �

In the case that we are considering an expression of the form: RA ± RB, theorem 4.2
gives us all the information about RA−RB, and theorem 4.1 tells us that in the RA +RB

case both A and B must preserve the decomposable subspaces. However, we can actually
say a little more about A and B in this case by considering R(ei, ej, fk, fl):

R(ei, ej, fk, fl) = RA(ei, ej, fk, fl) +RB(ei, ej, fk, fl)

= ailajk − aikajl − 2aijakl + bilbjk − bikbjl − 2bijbjl

But we just showed that ail = aik = ajk = ajl = bil = bik = bjk = bjl = 0. Therefore we
have that aijakl = −bijbkl for all i, j ≤ p and k, l > p, where p = dim(V1). This gives us
an easy way of constructing examples of two skew-adjoint matrices A and B such that
neither RA nor RB are decomposable, but RA +RB is decomposable.

Example 4.3 We will be considering the following matricies A and B, which are defined
on R4 with the standard basis:

A =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 B =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


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Note that bij = −aij if i, j > 2 and bij = aij otherwise. Since A and B have a trivial
kernel, [4] tells us that RA and RB are indecomposable. However, RA + RB decomposes
into two dimensional subspaces; one spanned by e1 and e2 and the other by e3 and e4.

5 The Invariant ηm(n)

We have already introduced η(n) in the introduction. In this section we will investigate
a slightly different concept, ηm(n).

Definition 5.1 Let R be an algebraic curvature tensor. Define the rank m η-invariant
to be: ηm(R) := min{k|

∑k
i=1 αiRAi

= R, and rank(Ai) ≥ m}.

It globalizes in a similar fashion to the normal invariant.

Definition 5.2 Let R be an algebraic curvature tensor. Define the globalized rank m
η-invariant to be: ηm(n) := max

R∈A
{ηm(R)}.

The following lemma is vital in establishing some interesting results about ηm(n).

Lemma 5.3 If D is a skew-adjoint matrix of rank 2m, then there exist skew-adjoint
matrices A, B, and C each of rank 2m+ 2 ≤ n such that RD = RA +RB −RC

Proof. Let D be any skew-adjoint matrix of rank 2m. Since D is skew-adjoint, there
exists a basis that block diagonalizes D, so we can write D as:

δ1 0 . . . 0 . . . 0
0 δ2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . δm . . . 0
0 0 . . . 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 0


Where δi is the 2× 2 block:

[
0 di
−di 0

]
. Now if we consider the following matrices, where

i is the 2× 2 block:

[
0 1
−1 0

]
:

A =



5
2
δ1 0 . . . 0 . . . 0
0 5

2
δ2 . . . 0 . . . 0

...
...

. . .
...

...
...

0 0 . . . 5
2
δm 0 . . . 0

0 0 . . . 0 3i . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 0


B =



5δ1 0 . . . 0 . . . 0
0 5δ2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 5δm 0 . . . 0
0 0 . . . 0 4i . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 0


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C =



11
2
δ1 0 . . . 0 . . . 0

0 11
2
δ2 . . . 0 . . . 0

...
...

. . .
...

...
...

0 0 . . . 11
2
δm 0 . . . 0

0 0 . . . 0 5i . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 0


Clearly, A, B, and C are all of rank 2m + 2. We now claim that RA + RB − RC = RD.
To prove this claim we just need to check that RAijkl + RBijkl − RCijkl = RDijkl for
all i, j, k, l. Since all the matrices involved are block diagonal, there are not that many
possible permutations of i, j, k, l which yield non zero entries, and one can check them all.
We only include three sample calculations, one for each of the cases:

RA1221 +RB1221 −RC1221 =
5

2

2

d21 + 25d21 −
11

2

2

d21 = d21[
25

4
+

100

4
− 121

4
] = d21 = RD1221

RA1234 +RB1234 −RC1234 =
5

2

2

d1d2 + 25d1d2 −
11

2

2

d1d2 = d1d2 = RD1234

RA12(2m)(2m+1) +RB12(2m)(2m+1)−RC12(2m)(2m+1) = d1[
15

2
+

40

2
− 55

2
] = 0 = RD12(2m)(2m+1)

�
Note that this is just one example from an infinite number of possible A, B, and C.

Theorem 5.4 For each n we have: η2m+2(n) ≤ 3mη(n).

Proof. The result follows from the above result: any canonical algebraic curvature tensor
of the skew-adjoint type can be written in 3m rank 2m + 2 skew-adjoint type tensors, so
η2m+2(n) ≤ 3mη(n). �

This is interesting, because in [7], Ragosta proves that, for the self-adjoint type:
µm(n) ≤ 2mµ(n). This means that one can move up single dimensions in the self-adjoint
case, something that is impossible in the skew-adjoint case because ever skew-adjoint
matrix has an even rank, but using these estimates the skew-adjoint type seems to be
more efficient, needing only 3mη(n) rank 2m + 2 matrices, whereas in the self-adjoint
case one might need up to 22mµ(n) = 4mµ(n). The word only is a bit gratuitous here;
3m and 4m are much larger than η(n) and µ(n) for large m, so it is highly unlikely that
η2m+2(n) = 3mη(n) for large n.

Corollary 5.5 The canonical algebraic curvature tensors with the skew-adjoint type in
which the defining matrices all have rank greater that or equal to 2m form a spanning set
of all algebraic curvature tensors.

We can use this fact to improve upon the previous estimate for large n. Since every
spanning set of a vector space must contain a basis, and we know that the skew-adjoint
type curvature tensors of rank ≥ 2m form a spanning set of A(n), we conclude that

η2m(n) ≤ dim(A(n)) = n2(n2−2)
12

.
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