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Abstract - According to Benford’s Law, many data sets have a bias towards lower leading
digits (about 30% are 1’s). The applications of Benford’s Law vary: from detecting tax,
voter and image fraud to determining the possibility of match-fixing in competitive sports.
There are many common distributions that exhibit such bias, i.e. they are almost Benford.
These include the exponential and the Weibull distributions. Motivated by these examples
and the fact that the underlying distribution of factors in protein structure follows an inverse
gamma distribution, we determine the closeness of this distribution to a Benford distribution
as its parameters change.
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1 Introduction

1.1 Motivation

For a positive integer B ≥ 2, any positive number x can be written uniquely in base B
as x = SB(x) · Bk(x) where k(x) is an integer and SB(x) ∈ [1, B) is called the significand
of x base B. Benford’s Law describes the distribution of significands in many naturally
occurring data sets and states that for any 1 ≤ s < B, the proportion of the set with
significand at most s is logB(s). In this paper, we examine the behavior of random
variables, so we adopt the following definition.

Definition 1.1 (Benford’s Law) Let X be a random variable taking values in (0,∞)
almost surely. We say that X follows Benford’s Law in base B if, for any s ∈ [1, B),

Prob (SB(X) ≤ s) = logB(s). (1)

In particular,

Prob (first digit of X is d) = logB

(
d+ 1

d

)
. (2)
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Thus in base 10 about 30% of numbers have a leading digit of 1, as compared to only
about 4.6% starting with a 9. For an introduction to the theory, as well as a detailed
discussion of some of its applications in accounting, biology, economics, engineering, game
theory, finance, mathematics, physics, psychology, statistics and voting see [6].

One of the most important applications of Benford’s law is in fraud detection; it has
successfully flagged voting irregularities, tax fraud, and embezzlement, to name just a few
of its successes.1 The motivation for this work was to see if a Benford analysis could have
detected some fraud on protein structures, as well as serve as a protection against future
unscrupulous researchers.

Proteins are the workhorses in all of biology; in plant, human, animal, bacterium, and
slime mold, alike. They keep us together, digest our food, make us see, hear, taste, feel,
and think, they defend us against pathogens, and they are the target of most existing
medicines. Knowledge about the three-dimensional structure of proteins is a prerequisite
for research in fields as diverse as drug design, bio-fuel engineering, food processing, or
increasing the yield in agriculture.

These three-dimensional structures can be solved with X-ray crystallography, Nuclear
Magnetic Resonance, or electron microscopy. Today, most structures are solved with X-
ray crystallography. When structures are solved with this technique the experimentalist
does not only obtain X, Y and Z coordinates for the atoms, but also a measure of their
mobility, which is called the B factor.

After it was detected that 12 of the 14 structures deposited in the PDB protein data
bank [1] by H. K. M. Murthy were not based on experimental data (see https://www.

uab.edu/reporterarchive/71570-uab-statement-on-protein-data-bank-issues),
two of the authors asked the question if their rather anomalous B-factor distributions
could have been used to automatically detect the problems (see swift.cmbi.ru.nl/gv/

Murthy/Murthy_4.html). In practice B-factor distributions are influenced by experiment
conditions and human choices. For example, B factors may fit inverse Gamma distribu-
tions translated towards higher values [3, 7], or the inverse Gamma fit might be worse
when upper and/or lower B factor limits are enforced by the experimentalist. The re-
ported properties of each of the 14 structures were used to find in the PDB a legitimate
protein structure of comparable experimental quality, deposition date, size, and B fac-
tor profile. In general, inverse Gamma parameters could be estimated well for both the
Murthy structures and the legitimate structures by maximum likelihood estimation when
accounting for the translation along the x-axis. This suggests the main question of this
paper: how close is the inverse Gamma distribution, for various choices of its parameters,
to Benford’s law? While unfortunately a Benford analysis did not flag Murthy’s structures
from legitimate ones, the question of how close this special distribution is to Benford is
still of independent interest, and we report on our findings below. This paper is a sequel
to [2], where a similar analysis was done for the three parameter Weibull.

1See interestingly Section 6 of [5] for comments on rounding in Benford’s original paper.
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1.2 Results

In practice, it is easier to use the following equivalent condition for Benford behavior (see,
for example, [4] or [6]), which we reprove here.

Definition 1.2 We say that a random variable Y taking values in [0, 1] is equidistributed
if, for any [a, b] ⊆ [0, 1],

Prob (Y ∈ [a, b]) = b− a. (3)

Theorem 1.3 A random variable X follows Benford’s Law in base B if and only if the
random variable Y := logBX mod 1 is equidistributed.

Proof. We only prove the reverse direction here as that is all we need to prove our main
result. Full details are given in [4]. Suppose Y := logBX mod 1 is equidistributed. First
note that

Y = logB(X) mod 1

= logB(SB(X) ·Bk(X)) mod 1

= logB(SB(X)) + logB(Bk(X)) mod 1

= logB(SB(X)). (4)

Then, taking a = 0, b = logB(p) in the definition of equidistribution, we get

Prob (logB(SB(X)) ∈ [0, logB(p)]) = logB(p). (5)

Exponentiating gives
Prob (SB(X) ∈ [1, p]) = logB(p), (6)

which is exactly the statement of Benford’s Law. �
In this paper, we examine the behavior of a random variable drawn from the inverse

gamma distribution. For fixed parameters α, β > 0, this distribution has density defined
by

f(x;α, β) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
(7)

and cumulative distribution function

F (x;α, β) =
1

Γ(α)

∫ ∞
β/x

tα−1e−t dt (8)

Let Xα,β be a random variable distributed according to (7) and let FB be the cumulative
distribution function of logB(Xα,β) mod 1. By Theorem 1.3, the assertion that Xα,β

follows Benford’s Law is equivalent to saying that FB(z) = z for all z ∈ [0, 1]. In this
paper, we investigate when the deviations of FB(z) from z are small, i.e., when Xα,β

approximately follows Benford’s Law. We do this by deriving a series expansion for F ′B(z)
of the form 1 + (error term), where the error term can be computed to great accuracy,
and then integrating in order to return to the cumulative distribution function, FB(z).
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In Section 2, we derive our series representation for F ′B(z). In Section 3, we give bounds
for the tail of the series, showing that the series can be computed to great accuracy by
computing only the first few terms. This result is built upon in Appendix A. In Section
4, we use this result to generate some plots illustrating the Benfordness of the inverse
gamma distribution as a function of α and β.

2 Series representation for F ′B(z)

Before beginning the analysis, we first note a useful invariant property of the Benfordness
of this distribution.

Lemma 2.1 For any α, β > 0 and z ∈ [0, 1],

Prob (logB SB(Xα,β) ≤ z) = Prob (logB SB(Xα,B·β) ≤ z) . (9)

In other words, the deviation from Benford’s law of the inverse Gamma distribution doesn’t
change if we scale β by a factor of B.

Proof. Scaling β by a factor of B yields

Prob (logB SB(Xα,B·β) ≤ z) =
∞∑

k=−∞

Prob (logBXα,B·β ∈ [k, z + k])

=
∞∑

k=−∞

Prob
(
Xα,B·β ∈ [Bk, Bz+k]

)
, (10)

which, by (8), is

=
1

Γ(α)

∞∑
k=−∞

(∫ ∞
B·β/Bz+k

tα−1e−tdt−
∫ ∞
B·β/Bk

tα−1e−tdt

)

=
1

Γ(α)

∞∑
k=−∞

∫ B·β/Bk

B·β/Bz+k
tα−1e−tdt

=
1

Γ(α)

∞∑
k=−∞

∫ β/Bk−1

β/Bz+k−1

tα−1e−tdt

= Prob (SB(Xα,β) ≤ z) . (11)

Thus, scaling β by a power of B only results in shifting k. Since we take an infinite
sum over k, this shift does not change the final value of the probability. As a consequence
of this, it is clear that scaling β by any power of B will yield the same result, shifting k
by that power. �
Thus it suffices to study 1 ≤ β < B.

To show that the deviations of FB(z) from z are small, it is easier in practice to show
that F ′B(z) is close to 1, and then integrate. We derive a series representation for F ′B(z),
but first, we state a useful property of Fourier transforms (see, for example, [8]).

Throughout the course of this paper, we define the Fourier transform as follows.
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Definition 2.2 (Fourier Transform) Let f ∈ L1(R). Define the Fourier transform f̂
of f by

f̂(ξ) :=

∫ ∞
−∞

f(x)e−2πixξdx. (12)

Furthermore, we will occasionally use the notation

F(f(x))(ξ) := f̂(ξ). (13)

Our main tool is the Poisson summation formula, which we state here in a weak form
(see Theorem 3.1 of [2] for a more detailed explanation).

Theorem 2.3 (Poisson Summation) Let f be a function such that f , f ′, and f ′′ are
all O(x−(1+η)) as x→∞ for some η > 0. Then

∞∑
k=−∞

f(k) =
∞∑

k=−∞

f̂(k). (14)

Theorem 2.4 Let α, β > 0 be fixed and let B ≥ 2 be an integer. Let Xα,β be a random
variable distributed according to equation (7). For z ∈ [0, 1], let FB(z) be the cumulative
distribution function of logB(Xα,β) mod 1. Then F ′B(z) is given by

F ′B(z) = 1 +
2

Γ(α)

∞∑
k=1

<
(
e2πik(logB β−z)Γ

(
α− 2πik

logB

))
. (15)

Proof. By the argument leading to (11),

FB(z) =
1

Γ(α)

∞∑
k=−∞

∫ β

Bk

β

Bz+k

tα−1e−tdt. (16)

Taking the derivative yields

F ′B(z) =
1

Γ(α)

∞∑
k=−∞

(
β

Bz+k

)α
exp

(
−β
Bz+k

)
lnB. (17)

Applying Poisson summation to (17) gives

F ′B(z) =
1

Γ(α)

∞∑
k=−∞

∫ ∞
−∞

(
β

Bz+t

)α
exp

(
−β
Bz+t

)
logB exp(−2πitk) dt. (18)
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We now let x = β
Bz+t

and dx = −β
Bz+t

logB dt so that we have

F ′B(z) =
1

Γ(α)

∞∑
k=−∞

∫ ∞
0

xα−1 exp

(
−2πik

(
log β

Bzx

logB

))
e−xdx

=
1

Γ(α)

∞∑
k=−∞

∫ ∞
0

xα−1
(

β

Bzx

)−2πik
logB

e−xdx

=
1

Γ(α)

∞∑
k=−∞

(
β

Bz

)−2πik
logB

∫ ∞
0

xα−1+
2πik
logB e−xdx

=
1

Γ(α)

∞∑
k=−∞

(
β

Bz

)−2πik
logB

Γ

(
α +

2πik

logB

)
. (19)

Note that
(
β
Bz

)2πiθ
= exp

(
2πiθ log β

Bz

)
, so our sum becomes

F ′B(z) =
1

Γ(α)

∞∑
k=−∞

exp

(
−2πik log β

Bz

logB

)
Γ

(
α +

2πik

logB

)
. (20)

This form of our sum will become useful in a later proof, but for the purposes of this
theorem, we further simplify our derivative and point out that the k = 0 term in (20) is
equal to 1. Thus our equation becomes

F ′B(z) = 1 +
1

Γ(α)

[
∞∑
k=1

exp

(
2πik log β

Bz

logB

)
Γ

(
α− 2πik

logB

)

+
∞∑
k=1

exp

(
−2πik log β

Bz

logB

)
Γ

(
α +

2πik

logB

)]

= 1 +
1

Γ(α)

[
∞∑
k=1

exp (2πik(logB β − z)) Γ

(
α− 2πik

logB

)

+ exp (−2πik(logB β − z)) Γ

(
α +

2πik

logB

)]
. (21)

Finally, using the identity that Γ(a+ ib) = Γ(a− ib) for real numbers a and b, we have

F ′B(z) = 1 +
2

Γ(α)

∞∑
k=1

<
(
e2πik(logB β−z)Γ

(
α− 2πik

logB

))
. (22)

�
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3 Bounding the truncation error

A key tool for the analysis in [2] is the identity

|Γ(1 + ix)|2 =
πx

sinh(πx)
(23)

for real x. Examining (22), it is clear that when α = 1, our analysis of the truncation error
is similar to that of [2]. Since the bound resulting from such analysis in the case of α = 1
is tighter than the bound for an arbitrary α, we have included the proof in the appendix.
However, when α 6= 1, the identity (23) is no longer applicable, so a new approach is
needed to bound the tails of the series expansion. We have the following bound on the
truncation error.

Theorem 3.1 Let F ′B(z) be as in (20). Let EM(z) denote the two-sided tail of the series
expansion, i.e.,

EM(z) :=
∑
|k|≥M

exp

(
−2πik log β

Bz

logB

)
Γ

(
α +

2πik

logB

)
. (24)

1. We have

|EM(z)| ≤
e
β
Bz
(
β
Bz

)α
Γ(α)

(
1

α
B−Mα +

∫ ∞
BM

e−xxα−1dx

)
. (25)

2. This is bounded uniformly on z ∈ [0, 1] by the constant

|EM(z)| ≤ C(α, β,B)

Γ(α)

(
1

α
B−Mα +

∫ ∞
BM

e−xxα−1dx

)
(26)

where C(α, β,B) = max
(
eββα, eααα, e

β
B

(
β
B

)α)
.

3. Furthermore, for any ε > 0, in order to have |EM(z)| < ε in (26) it suffices to take

M > max

(
α + 1, − logB

(
ε · Γ(α)

2C(α, β,B)

))
(27)

where C(α, β,B) is as above.

Proof.
Proof of part (1): locally bounding the truncation error

We begin with (20).
Let φ(z) = log β

Bz
. We have

E(z) := F ′B(z)− 1 =
1

Γ(α)

∑
|k|≥1

exp

(
−2π

ikφ(z)

logB

)
Γ

(
α + 2π

ik

logB

)
. (28)
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Furthermore, given Γ(a + 2πib) =
∫∞
0
e−xxa+2πib−1dx, we may perform a change of vari-

ables and let x = e−u so that we get

Γ(a+ 2πbi) =

∫ ∞
−∞

e−e
−u
e−aue−2πibudu = F

(
e−e

−u
e−au

)
(b), (29)

where F(·) denotes the Fourier transform, as stated in (13). This transforms our sum
into the sum of terms of the form

exp

(
−2πikφ(z)

logB

)
Γ

(
α + 2π

ik

logB

)
= exp

(
−2πikφ(z)

logB

)[
F
(
e−e

−u
e−αu

)( k

logB

)]
. (30)

Suppose s ∈ L1(R), P > 0, and t ∈ R. Define

g(x) ≡ s(Px+ t). (31)

The scaling and frequency shift properties of Fourier transforms then yield

ĝ(ξ) =
1

P
exp

2πikt

P
ŝ

(
ξ

P

)
. (32)

Thus, if g meets the conditions required for Poisson summation, we have

P
∑
n∈Z

s(t+ nP ) =
∑
k∈Z

exp
2πikt

P
F(s)

(
k

P

)
. (33)

Therefore, letting s = e−e
−u
e−αu, P = logB, and t = −φ(z), we have

E(z) =
∑
|k|≥1

F(s)

(
k

P

)
e2πi

k
P
t 1

P

=

(∑
k∈Z

F(s)

(
k

P

)
e2πi

k
P
t 1

P

)
− 1

≤ P
∑
k∈Z

s(t+ kP )

=
logB

(
e−e

φ(z)
eαφ(z)

)
Γ(α)

∑
k∈Z

e−e
−k logB

e−αk logB. (34)

We now concentrate on the truncation error EM(z). We bound our sums by integrals and
perform a change of variables, letting x = e−k logB:
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EM(z) ≤
logB

(
e−e

φ(z)
eαφ(z)

)
Γ(α)

∑
|k|≤M

e−e
−k logB

e−αk logB. (35)

This may then be extended to give

|EM(z)| ≤

(
e−e

φ(z)
eαφ(z)

)
Γ(α)

(∫ ∞
BM

e−xxα−1dx+

∫ B−M

0

e−xxα−1dx

)

≤

(
e−e

φ(z)
eαφ(z)

)
Γ(α)

(∫ ∞
BM

e−xxα−1dx+

∫ B−M

0

xα−1dx

)

≤
e−β/B

z ( β
Bz

)α
Γ(α)

(∫ ∞
BM

e−xxα−1dx+
1

α
B−Mα

)
, (36)

which is (25), thus proving (1).

Proof of part (2): uniformly bounding the truncation error for z ∈ [0, 1].To get (26),
we simply maximize (25) with respect to z. Set

g(z) = e−β/B
z

(
β

Bz

)α
, (37)

set the derivative equal to 0 to get

g′(z) = e−β/B
z

(β/Bz)α logB

(
β

Bz
− α

)
= 0, (38)

and solve to get z = logB
(
β
α

)
. Also note that g′(z) is decreasing, so g(z) has exactly

one maximum at z = logB
(
β
α

)
. Recalling that we only consider |EM(z)| on z ∈ [0, 1],

we conclude that if logB
(
β
α

)
≤ 0, |EM(z)| is maximized at z = 0, if logB

(
β
α

)
∈ (0, 1),

|EM(z)| is maximized at z = logB
(
β
α

)
, and if logB

(
β
α

)
≥ 1, then |EM(z)| is maximized at

z = 1. Calculating the value of (25) at these three points and letting C(α, β,B) be their
maximum yields (26), so part (2) is proven.

Proof of part (3). Fix an ε > 0 and suppose

M > max

(
α + 1, − logB

(
ε · Γ(α)

2C(α, β,B)

))
. (39)

In particular, this implies that BM > eα+1, so for all x ≥ BM , x/ log x > α + 1, which
implies that

e−xxα−1 ≤ 1/x2. (40)
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Equation (39) also implies that

1

α
B−Mα +B−M < 2B−M <

ε · Γ(α)

C(α, β,B)
. (41)

Combining (40) and (41) with (26), we have the bound

|EM(z)| < C(α, β,B)

Γ(α)

(
1

α
B−Mα +

∫ ∞
BM

1

x2
dx

)
<

C(α, β,B)

Γ(α)

(
1

α
B−Mα +B−M

)
<

C(α, β,B)

Γ(α)

ε · Γ(α)

C(α, β,B)
= ε. (42)

�

4 Plots and analysis

Using Theorem 3.1 allows us to easily compare FB(z), the CDF of logXα,β, with z, the
Benford CDF. We simply integrate (22) from 0 to z, yielding

FB(z) = z +
1

Γ(α)

∑
|k|≥1

Γ

(
α +

2πik

logB

)
1

2πik
e−2πik logB(β)

(
e2πikz − 1

)
. (43)

We now use Theorem 3.1 in the following way. Fix an ε > 0. Then part (3) of Theorem
3.1 allows us to quickly compute the value of |F ′B(z) − 1| to within ε of the true value.
Thus, after integrating, since we are only working on z ∈ [0, 1], the mean value theorem
guarantees that we now know |FB(z)− z| to within ε of the true value. In short, Theorem
3.1 allows us to obtain very good estimates for |FB(z) − z| by taking only the first few
terms, which makes calculating the deviation more computationally feasible. To measure
the closeness to Benford of the distribution, we use the quantity

max
z∈[0,1]

|FB(z)− z|. (44)

In Figure 1, we illustrate this quantity as a function of α and β with B = 10 fixed. The
emergent trend is that as α increases, the distribution gets farther away from Benford,
and the Benfordness is largely independent of β. This behavior is similar to that of the
Weibull distribution exhibited in [2].

A Bounding the truncation error in the special case α = 1

As mentioned above, when α = 1 it is possible for us to achieve better bounds on the
truncation error using methods similar to those in [2].
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Figure 1: Contour plots of the quantity maxz∈[0,1] |FB(z) − z| (see (43)) as a function of
α and β with B = 10 fixed. Using part (3) of Theorem 3.1, we have made the displayed
values accurate to within ε = 0.001. Notice that the error is large for large α, meaning
that the inverse gamma distribution only approximates Benford behavior for small α.
Also notice that β has less of an effect on the error.

Theorem A.1 Let F ′B(z) be as in Theorem 2.4 with α = 1.

1. For M ≥ log 2 logB
4π2 , the contribution to F ′B(z) from the tail of the expansion (from

the terms with k ≥M in (22)) is at most

4(π2 + logB)

π
√

logB
M exp

(
−π2M

logB

)
. (45)

2. For an error of at most ε from ignoring the terms with k ≥ M in (22), it suffices
to take

M =
h+ log h+ 1/2

a
(46)

where a = π2

logB
, h = max

(
6,− log aε

C

)
, and C = 4(π2+logB)

π logB
.
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Proof.

1. As stated, we estimate the contribution to F ′B(z) from the tail when α = 1. Let

EM(z) :=
2

Γ(1)

∞∑
k=M

<
(
e2πik(logB β−z)Γ

(
1 +
−2πik

logB

))
(47)

where Γ(1 + iu) =
∫∞
0
e−xxiudx with u = −2πik

logB
in our case. We note that as

u increases, there is more oscillation, which means the integral would achieve a
smaller value when u increases. Since |eiθ| = 1, when we take the absolute values
inside the sum we get |e2πik(logB β−z)| = 1. Thus it is safe to ignore this term in
computing the upper bound.

Using the fact that |Γ(1 + ix)|2 = πx
sinh(πx)

, we have from (47):

|EM(z)| ≤ 2

Γ(1)

∞∑
k=M

∣∣e2πik(logB β−z)∣∣ ∣∣∣∣Γ(1 +
−2πik

logB

)∣∣∣∣
≤ 2

√
2π√

logB

∞∑
k=M

√√√√ k

sinh
(

2π2k
logB

)
=

2
√

2π√
logB

∞∑
k=M

√√√√ 2k2

exp
(

2π2k
logB

)
− exp

(
−2π2k
logB

)
≤ 4π√

logB

∞∑
k=M

√
k2/ exp

(
2π2k

logB

)
. (48)

Here we have overestimated the error by disregarding the difference in the denom-

inator, which is very small when k is big. Let u = exp
(

2π2k
logB

)
. For 1

u−1/u <
2
u
, we

must get u ≥
√

2, which means exp
(

2π2k
logB

)
≥
√

2. Solving this gives us k ≥ log 2 logB
4π2 ,

which will help us simplify the denominator as we can assume M exceeds this value
and k ≥M . We can now substitute this bound into (48) to simplify further:

|EM(z)| ≤ 4π√
logB

∞∑
k=M

√
2k

exp
(
π2k
logB

)
≤ 4π√

logB

∫ ∞
M

m exp

(
−π2m

logB

)
dm. (49)
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We let a = π2

logB
and apply integration by parts to get

|EM(z)| ≤ 4π√
logB

1

a2
(
aMe−aM + e−aM

)
≤ 4π√

logB

a+ 1

a
Me−aM

=
4π(a+ 1)

a
√

logB
Me−aM , (50)

which simplifies to

|EM(z)| ≤ 4(π2 + logB)

π
√

logB
M exp

(
−π2M

logB

)
, (51)

proving part (1).

2. Let C = 4(π2+logB)
π logB

and a = π2

logB
as before. We want

CMe−aM ≤ ε. (52)

We will do this by iteratively expanding to improve the bounds. Let v = aM , then

C

a
ve−v ≤ ε⇐⇒ ve−v ≤ aε

C
. (53)

We carry out a change of variables one more time, letting h = − log aε
C

and expanding
v as v = h+ x. This leads to

ve−v ≤ e−h

←→ h+ x

ex
≤ 1. (54)

Now we note that by expanding v in this way, solving for x is equivalent to solving
for v , which is equivalent to solving for M . We guess x = log h + 1

2
then the

left-hand-side of 54 becomes:

h+ log h+ 1/2

he1/2
≤ 1↔ h+ log h+ 1/2 ≤ he1/2. (55)

Now what we want to do is to determine the value of h so that log h ≤ h/2 since
this ensures the inequality above would hold. The aforementioned inequality gives
h ≤ eh/2 or h2 ≤ eh. Since for h positive, eh ≥ h3

3!
, it is sufficient to choose h such

that h2 ≤ h3/6 or h ≥ 6. For h ≥ 6,

h+ log h+
1

2
≤ h+

h

12
+
h

2
=

19h

12
≈ 1.5883h. (56)
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As he1/2 ≈ 1.64872h, a sufficient cutoff for M in terms of h for an error of at most
ε is

M =
h+ log h+ 1/2

a
(57)

with a = π2

logB
, h = max

(
6,− log aε

C

)
.

�
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