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Abstract - Recently, several new games have been introduced that can be played on knot
and link diagrams. One of the first such games, played on knot diagrams, is called the
Knotting-Unknotting Game. In this game, one player aims to create an unknot while their
opponent tries to produce a nontrivial knot. The Linking-Unlinking Game is similar, but
is played on link diagrams. In this game, one player’s goal is to produce an unlink while
the other player aims to create any nontrivial link. In our paper, we introduce a hybrid of
these two games, called the KnotLink game, that can be played on either a knot or a link
diagram. Moves and players’ goals are similar to those of the previous two games, with one
key difference that allows the game board to be transformed from a knot to a link or vice
versa during game play. We describe this new game, provide a sample game, and prove
several results regarding winning strategies for infinite families of rational knots and links.
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1 Introduction

While playing a game is usually considered to be a recreational activity, sometimes it can
actually be viewed as mathematics research. That was the case for us. In particular,
there are several interesting games that can be played on knot and link diagrams. While
we have enjoyed playing some of these games that have been introduced by other teams
of math researchers, doing so inspired us to invent a new game that is a fascinating
hybrid of two games that have previously been studied. In this paper, we introduce our
new game, called the KnotLink game, and study it from the perspective of combinatorial
game theory, using facts from knot theory as we delve into winning strategies. Before we
begin, though, let’s acquaint ourselves with some essential background material from the
world of mathematical knots and links.

1.1 Knot Theory Essentials

A knot is an embedding of a circle into 3-dimensional Euclidean space. Knots are often
represented by knot diagrams, or 2-dimensional closed curves with a finite number of
transverse self-intersections. Crossings in knot diagrams are decorated so that it is clear
which strand should pass over and which should pass under at each intersection point. The
special knot that can be represented by a diagram with no crossings is called the unknot.
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All other knots are called nontrivial knots. Similarly, links are—possibly intertwining—
collections of knots, where each knot in the collection is called a component of the link.
A link diagram is a 2-dimensional representation of a link. If a link is simply a disjoint
collection of unknots, we call it an unlink.

Knot theory concerns the study of knots and links. In particular, the central question
of knot theory deals with classification: when are two knots or links the same and when
are they different? We give an example of a nontrivial knot (the trefoil) and a nontrivial
link (the Hopf link) in Figure 1.

Figure 1: A diagram of the unknot (left), the trefoil knot (center) and a Hopf link (right)

One tool knot theorists use to help them determine if two knots or links are the
same is Reidemeister’s theorem. In the 1920’s, Kurt Reidemeister [8] and, independently,
Alexander and Briggs [1] proved that two knot or link diagrams represent the same knot
or link if and only if the diagrams can be related by a sequence of Reidemeister moves.
The three Reidemeister moves are shown in Figure 2. As we’ll see later, these moves
are very useful when we need to identify whether or not a given knot or link diagram
represents an unknot/unlink or a nontrivial knot/link.

R1 R1

R2

R3 R3

Figure 2: The Reidemeister moves: R1, R2, and R3.
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1.2 Games Played on Knot and Link Diagrams

We have enjoyed playing several two-player combinatorial games inspired by knot theory
[2, 3, 4, 5, 6]. The focus of this paper, however, is a new type of knot game, called
the KnotLink Game. This game is a hybrid of two previously studied games, called the
Knotting-Unknotting Game [6] and the Linking-Unlinking Game [3].

Figure 3: A knot shadow, or game board

In the Knotting-Unknotting Game [6], two players, the Knotter and the Unknotter,
are given a game board, which is the shadow of a knot. A knot shadow is the projection
of a knot onto a plane in such a way that over-under crossing information is undetermined.
See, for example, Figure 3. In this game, players take turns resolving crossings. In other
words, a move consists of choosing an unknown crossing and deciding which strand goes
over and which goes under at that crossing. Once all of the crossings have been resolved,
the resulting knot is either an unknot or is nontrivially knotted. The goal for the Knotter
is to turn the game board into any nontrivial knot, while the goal of the Unknotter is to
turn the game board into an unknot.

Note that, during game play, the game board may be neither a shadow nor a knot
diagram. Such diagrams, where only some of the crossing information is known, are called
pseudodiagrams. If a pseudodiagram will turn into an unknot regardless of how its
unknown crossings are resolved, we call it an unknotted pseudodiagram. An example
is shown in Figure 4.

Figure 4: An unknotted pseudodiagram

The Knotting-Unknotting Game inspired the invention of another game, the Linking-
Unlinking Game [3], where players are given a link shadow. Once again, players take turns
resolving unknown crossings. In this game, one player, the Unlinker, wants to create the
unlink while the other player, the Linker, aims to create any nontrivial link.
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In this paper, we will take inspiration from both the Linking-Unlinking Game and
the Knotting-Unknotting Game. We combine these two games to invent a game that can
be played on either a knot shadow or a link shadow. In our game, called the KnotLink
Game, the Simplifier plays with the goal of creating either an unknot or an unlink, and
the Complicator’s goal is to make any nontrivial knot or link. Most moves in the game
consist of players taking turns resolving crossings, but each player has a special move they
have the option to use once, at any point in the game. This special move is smoothing
an unknown crossing. See Figure 5. A player may opt to smooth at a crossing either
horizontally or vertically, as shown in the figure.

Figure 5: Smoothing an unknown crossing

Now that we have a new game to explore, our main aim is to determine which player
has a winning strategy on certain knot and link shadows. In other words, given a
starting game board and a choice of which player moves first, we’d like to know which
player has a strategy that will guarantee them a win. For the purposes of this paper, we
will consider game boards that are the shadows of standard minimal crossing diagrams
of knots and links from two special families. One family is called the (2, p)-torus knots
and links. The other is a particular family of rational knots and links, which we will call
(p, q) rational knots and links. These families are best described via their standard
diagrams. In Figure 6, we illustrate a diagram for (2, p) torus knots and links, and in
Figure 7, we illustrate a diagram for (p, q) rational knots and links. We see that the (2, p)
torus knots and links are formed by taking a twist containing p crossings and closing the
twist up to form a knot or link. The (p, q) rational knots and links are formed by joining a
twist containing p crossings to one containing q crossings, and then closing the knot/link
up in a certain way. We note that the (p, 2) rational knots are themselves a special family
of knots called the twist knots.

p

Figure 6: A (2, p) torus knot/link.
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p
q

Figure 7: A (p, q) rational knot/link.

In Section 3, we will study the KnotLink game played on shadows of these families.
But first, in Section 2, let us look at a sample game.

2 A Sample KnotLink Game

In this section, we provide a sample game, where the Simplifier and the Complicator
compete in the KnotLink game on a twist knot diagram. Here, the Complicator moves
first.

In Figure 8, we demonstrate the game. Diagram (a) shows our starting game board,
and in diagram (b), the Complicator begins by resolving a crossing in the 5 twist. The
Simplifier responds in diagram (c) by resolving an adjacent crossing in the 5 twist in such
a way that a simplifying R2 move can be performed. Next, the Complicator moves in
diagram (d) on a crossing in the 5 twist, performing a smoothing. The Simplifier then
uses their one smoothing move in diagram (e) in the 2 twist. In the remaining moves,
players take turns resolving the remaining crossings. Finally, a diagram of the unknot is
produced and the Simplifier wins.

Could the Complicator have won this game if they had played more strategically? In
the next section, we’ll find out!

3 Results for Special Knot Families

Since the KnotLink game is a type of combinatorial game, given a game board and a
choice of who plays first, there is a player who can guarantee themselves a win by playing
following a certain strategy. We aim to determine who that player is—by identifying their
winning strategy—for a number of game boards.

3.1 The (2, p) torus knots and links

We begin our investigation of winning strategies with a simple result for (2, p)-torus knots.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: A sample game.

Proposition 3.1 Consider a game board consisting of a standard (2, p)-torus knot/link
diagram. The Simplifier has a winning strategy, both moving first and moving second.

Proof. If the Simplifier moves first, then they should smooth at a crossing in such a way
that a unknotted pseudodiagram is produced.

If the Complicator moves first, they will either resolve a crossing (preserving the
general (2, p)-torus link structure) or else they will smooth at a crossing to create a
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simpler torus link or an unknotted pseudodiagram. The Complicator loses immediately
if they make an unknotted pseudodiagram. In the case that they preserve the torus link
structure, the Simplifier should smooth at a crossing in such a way that an unknotted
pseudodiagram is produced. �

3.2 The (p, q) rational knots and links

Next, we’ll turn our attention to (p, q) rational knots and links. We consider every type
of (p, q) rational knot/link by considering every possible combination of parities (i.e.,
odd/even information) for p and q.

3.2.1 Both p and q are even

We begin with the following theorem for p and q both even.

Theorem 3.2 If the KnotLink Game is played on a standard (p, q) rational knot diagram
(see Figure 7) where both p and q are positive and even, then the second player has winning
strategy regardless of their goal.

As with the remaining theorems, we prove it by proving two lemmas. Each lemma
specifies which player plays first. In most of the proofs in this section, we proceed by
cases. When the first player is the losing player, these cases look like the diagrams given
in Figure 9. Note that which crossing a player moves on within a twist does not affect game
strategy or game outcomes, so without loss of generality, we move on the first crossing in
each twist.

Lemma 3.3 If the KnotLink Game is played on a standard (p, q) rational knot diagram
where both p and q are even and the Complicator moves first, then the Simplifier has
winning strategy.

Proof.

Case 1: Suppose the Complicator performs a horizontal smoothing in the q twist. Then,
the Simplifier should perform a vertical smoothing in the q twist. Now, neither player has
the smoothing move available to them, and there are an even number of crossings in the
p twist and the q twist remaining. For the rest of the game, when the Complicator moves
in q, the Simplifier should move in q, resolving any crossing in any way since the q twist
crossings no longer affect the linking of the diagram. Moreover, when the Complicator
resolves a crossing in p, the Simplifier should respond by resolving an adjacent crossing
in p so that an R2 move can be performed to remove the two crossings from the diagram.
This will result in an unlink diagram.

Case 2: Suppose the Complicator performs a vertical smoothing in the q twist. Then,
the Simplifier should perform a horizontal smoothing in the q twist and then follow the
same strategy as in Case 1.
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q

p
q

Case 1 Case 2

p
q

p
q

Case 3 Case 4

p
q

p
q

Case 5 Case 6

Figure 9: The six cases considered in the proofs of Lemmas 3.3 and 3.4.

Case 3: Suppose the Complicator resolves a crossing in the q twist. Then the Simplifier
should resolve an adjacent crossing in q so that an R2 move can be performed, reducing
the game to a game on a smaller, (p, q − 2) rational knot (if q > 2) or an unknotted
pseudodiagram (if q = 2).

Case 4: Suppose the Complicator performs a horizontal smoothing in the p twist. This
case is analogous to Case 2 and should be handled similarly.

Case 5: Suppose the Complicator performs a vertical smoothing in the p twist. This
case is analogous to Case 1 and should be handled similarly.

Case 6: Finally, suppose the Complicator resolves a crossing in the p twist. This case is
analogous to Case 3 and should be handled similarly.

�

Lemma 3.4 If the KnotLink Game is played on a standard (p, q) rational knot diagram
where both p and q are even and the Simplifier moves first, then the Complicator has

the pump journal of undergraduate research 3 (2020), 110–124 117



winning strategy.

Proof.

Case 1: Suppose the Simplifier performs a horizontal smoothing in the q twist. Then, the
Complicator should perform a vertical smoothing in the q twist. Now, neither player has
the smoothing move available to them, and there are an even number of crossings in the
p twist and the q twist remaining. For the rest of the game, when the Simplifier moves in
q, the Complicator should move in q, resolving any crossing in any way since the q twist
crossings no longer affect the linking of the diagram. Moreover, until the very last move
by the Complicator, when the Simplifier resolves a crossing in p, the Complicator should
respond by resolving an adjacent crossing in p so that an R2 move can be performed
to remove the two crossings from the diagram. The last move by the Complicator in p,
however, should be an alternating resolution of the final crossing to produce the Hopf
link.

Case 2: Suppose the Simplifier performs a vertical smoothing in the q twist. Then, the
Complicator should perform a horizontal smoothing in the q twist and then follow the
same strategy as in Case 1.

Case 3: Suppose the Simplifier resolves a crossing in the q twist. If q > 2, then the
Complicator should resolve an adjacent crossing in the q twist to enable an R2 move,
reducing the game to a new game on a smaller, (p, q− 2) rational knot. If q = 2, then the
Complicator should resolve the remaining q crossing so that the two q twist crossings are
alternating. From here, if the Simplifier smooths in one direction in p, the Complicator
should smooth another p crossing in the opposite direction, producing a pseudodiagram
of the Hopf link. If the Simplifier resolves a crossing, the Complicator should resolve an
adjacent crossing so that an R2 move can be performed until the last move, when the
Complicator should make the remaining two crossings in p alternating, finally producing
either the trefoil or the figure-eight knot.

Case 4: Suppose the Simplifier performs a horizontal smoothing in the p twist. This case
is analogous to Case 2 and should be handled similarly.

Case 5: Suppose the Simplifier performs a vertical smoothing in the p twist. This case
is analogous to Case 1 and should be handled similarly.

Case 6: Finally, suppose the Simplifier resolves a crossing in the p twist. This case is
analogous to Case 3 and should be handled similarly.

�

3.2.2 The parities of p and q are different

Now we turn our attention to the especially tricky case of (p, q) rational knots where the
parities of p and q are different from one another.
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Theorem 3.5 If the KnotLink Game is played on a standard (p, q) rational knot diagram
where p is odd and q is even, then the Simplifier wins, regardless of whether they move
first or second.

To prove this theorem, we consider the cases where the Simplifier plays first and the
Simplifier plays second in two lemmas.

Lemma 3.6 If the Simplifier plays first on a standard (p, q) rational knot diagram where
p is odd and q is even, then the Simplifier wins.

Proof. The Simplifier’s first move should be a vertical smoothing in the q twist. (See
Figure 9, Case 2.) Now, the only crossings potentially affecting the nontriviality of the
knot or link that will be produced by game play are the crossings in the p twist; each
of the crossings remaining in q can either (a) eventually be undone with R1 moves, (b)
produce a trivial, unlinked component if the Complicator smooths vertically in q or (c)
disappear altogether, if the Complicator smooths horizontally in q.

Suppose the Complicator does not choose to smooth a crossing in p during game play.
Then, since the number of crossings in the p twist is odd and the number of remaining
crossings in the q twist is odd, regardless of where the Complicator moves, the Simplifier
can play the remainder of the game so that they choose crossing information for exactly⌊
p
2

⌋
or

⌈
p
2

⌉
crossings in p. Moreover, the Simplifier can resolve

⌊
p
2

⌋
of these crossings in

response to how the Complicator resolves a crossing in p, guaranteeing that
⌊
p
2

⌋
R2 moves

can be performed to eliminate all but one crossing from p. If p only has one crossing,
the resulting diagram is guaranteed to be unknotted. Note that, this strategy implicitly
assumes that if the Complicator moves in the q twist and there are still available moves
in the q twist, the Simplifier will resolve a crossing in q.

Now, if the Complicator did decide to use their smoothing in the p twist at some point
during game play, a horizontal smoothing would produce an unknotted pseudodiagram,
handing the Simplifier a win. So for our final case, suppose the Complicator uses a
vertical smoothing in the p twist at some point during game play. If the Simplifier has
been following the resolution strategy above to be able to perform as many R2 moves
as possible in p, at this point in the game, there are either no resolved crossings in the
p twist or one resolved crossing (that can’t be removed with an R2 move). If there is
one resolved crossing in p, the Simplifier should resolve another crossing to enable an R2
move. If there are no resolved crossings in p (that can’t be removed with R2 moves), then
an even number of moves had been performed in p before the smoothing, guaranteeing
that there are still an odd number of available moves in the q twist. So, the Simplifier
should resolve a crossing in q next. Now, at this point in the game, there are an even
number of unknown crossings in p and an even number of unknown crossings in q, and it
is the Complicator’s turn next. Now that the Complicator has used their smoothing, the
game can proceed with the Simplifier responding to the Complicator’s resolutions in p
with resolutions in p that result in R2 simplifications and resolutions in q with resolutions
in q. �
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Lemma 3.7 If the Complicator plays first on a standard (p, q) rational knot diagram
where p is odd and q is even, then the Simplifier wins.

Proof.

Case 1: Suppose the Complicator performs a horizontal smoothing in the q twist. Ac-
cording to the results of [3], if the Simplifier doesn’t use their smoothing, the Complicator
will have a winning strategy. Thus, the Simplifier should use their smoothing, performing
a second horizontal smoothing in the q twist to produce an odd-even rational knot on
which the remainder of the game is played essentially as a Knotting-Unknotting Game
(since both players have used their smoothings). According to Theorem 13.3.2 in [7], the
Simplifier/Unknotter has a winning strategy in this game.

Case 2: Suppose the Complicator performs a vertical smoothing in the q twist. The
Simplifier should respond by performing a horizontal smoothing in the p twist to produce
an unknotted pseudodiagram.

Case 3: Suppose the Complicator resolves a crossing in the q twist. The Simplifier
should respond by resolving an adjacent crossing in the q twist so that an R2 move can
be performed. This either reduces the game to a new game played on a smaller, (p, q− 2)
rational knot, or if q = 2, this results in an unknotted pseudodiagram.

Case 4: Suppose the Complicator performs a horizontal smoothing in the p twist. In
this case, the Simplifier should perform a vertical smoothing in the q twist, producing an
unknotted pseudodiagram.

Case 5: Suppose the Complicator performs a vertical smoothing in the p twist. This pro-
duces an even-even rational knot. According to the results in [6], if the Simplifier doesn’t
use their smoothing move, the Complicator has a winning strategy. Thus, the Simplifier
should smooth next. Performing another vertical smoothing in the p twist produces an
odd-even rational knot on which the remainder of the game is played essentially as a
Knotting-Unknotting Game (since both players have used their smoothings). According
to Theorem 13.3.2 in [7], the Simplifier/Unknotter has a winning strategy in this game.

Case 6: Finally, suppose the Complicator resolves a crossing in the p twist. If p > 1,
then the Simplifier should resolve an adjacent crossing in p so that an R2 move can be
performed to reduce the game to a new game played on a smaller, (p−2, q) rational knot.
If p = 1, the Simplifier should perform a vertical smoothing in q to produce an unknotted
pseudodiagram.

�
The following corollary can be easily proven by essentially rotating the above strategies

by 90 degrees. In other words, if we swap all p’s and q’s in the proofs above and every
instance of a horizontal smoothing is replaced by a vertical one and vice versa, the same
proofs justify the following result.

Corollary 3.8 If the KnotLink Game is played on a standard (p, q) rational knot diagram
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where p is even and q is odd, then the Simplifier wins, regardless of whether they move
first or second.

3.2.3 Both p and q are odd

Finally, we consider the case of (p, q) rational links where p and q are both odd.

Theorem 3.9 If the KnotLink Game is played on a standard (p, q) rational link diagram
where both p and q are odd, then the Simplifier wins, regardless of whether they move first
or second.

We prove our theorem with two lemmas.

Lemma 3.10 If the Simplifier plays first on a standard (p, q) rational link diagram where
p and q are both odd, then the Simplifier wins.

Proof. Let’s begin by considering the special case where p = q = 1. In this case,
the Simplifier should smooth at any crossing in any direction to create an unknotted
pseudodiagram. Otherwise, let the Simplifier’s first move be a resolution of a crossing in
the q twist. Now, we have six cases to consider for the Complicator’s first move. Note
that the first three cases only apply if q > 1.

Case 1: Suppose the Complicator performs a horizontal smoothing in the q twist. This
transforms the game into one where p is odd and q is even, where the Simplifier has a
winning strategy moving first or second. Since the Simplifier still has their smoothing
move, the strategy of Theorem 3.5 guarantees the Simplifier a win in this case.

Case 2: Suppose the Complicator performs a vertical smoothing in the q twist. The Sim-
plifier can now create an unknotted pseudodiagram by performing a horizontal smoothing
in the p twist.

Case 3: Suppose the Complicator resolves a crossing in the q twist. The Simplifier should
resolve another crossing in the q twist to reduce the diagram to a simpler odd-odd game.

Case 4: Suppose the Complicator performs a horizontal smoothing in the p twist. The
Simplifier can now create an unknotted pseudodiagram by performing a vertical smoothing
in the q twist.

Case 5: Suppose the Complicator performs a vertical smoothing in the p twist. If q > 1,
then the Simplifier may resolve a second crossing in the q twist to allow an R2 move to
be performed and reduce the game board to an even-odd starting board. Corollary 3.8
now guarantees the Simplifier a win since the Simplifier has not yet used their smoothing
move. On the other hand, if q = 1 we have that p > 1, so the Simplifier can perform a
horizontal smoothing in the p twist to produce an unknotted pseudodiagram.

Case 6: Finally, suppose the Complicator resolves a crossing in the p twist. Suppose
q > 1. If p > 1, the Simplifier should resolve another crossing in the p twist so that an R2
move can be performed, reducing to a simpler game. If p = 1, then the Simplifier should
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perform a vertical smoothing in the q twist to produce an unknotted pseudodiagram. Now,
if q = 1, regardless of what p is, the Simplifier should perform a horizontal smoothing in
the p twist to produce an unknotted pseudodiagram.

�

Lemma 3.11 If the Complicator plays first on a standard (p, q) rational link diagram
where p and q are both odd, then the Simplifier wins.

Proof. Since the losing player moves first, we consider all six possible opening moves
that the Complicator could choose.

Case 1: Suppose the Complicator performs a horizontal smoothing in the q twist. Then
the game board is equivalent to the starting game board described in Theorem 3.5. In
the odd-even game, the Simplifier has a winning strategy. Since the Simplifier has not
yet used their smoothing move in this game, the Simplifier has a winning strategy.

Case 2: Suppose the Complicator performs a vertical smoothing in the q twist. Then
the Simplifier can immediately produce an unknotted pseudodiagram by performing a
horizontal smoothing in the p twist.

Case 3: Suppose the Complicator resolves a crossing in the q twist. If q > 1, the
Simplifier should resolve a crossing so that an R2 move can be performed to simplify the
game board to a smaller odd-odd starting configuration. It is as if we are beginning a new
game since no player has used their smoothing move. On the other hand, if q = 1, the
Simplifier should do a horizontal smoothing in p to produce an unknotted pseudodiagram.

Case 4: Suppose the Complicator performs a horizontal smoothing in the p twist. Then
the Simplifier can immediately produce an unknotted pseudodiagram by performing a
vertical smoothing in the p twist, just as in Case 2.

Case 5: Suppose the Complicator performs a vertical smoothing in the p twist. Then,
just as in Case 1, our previous results (Corollary 3.8) guarantee that the Simplifier has a
winning strategy.

Case 6: Finally, suppose the Complicator resolves a crossing in the p twist. If p > 1,
then the Simplifier should resolve a neighboring crossing in such a way that an R2 move
can be performed. This reduces the game board to a smaller odd-odd game. If p = 1,
then the Simplifier can produce an unknotted pseudodiagram by performing a vertical
smoothing in q.

Since every case provides the Simplifier a winning strategy, our proof is complete. �

3.2.4 A corollary for twist knots

As we noted in Section 1, twist knots are a special subfamily of rational knots, the (p, 2)
rational knots. Our results from Subsections 3.2.1 and 3.2.2 can be applied to this family
to give us the following corollary.
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Corollary 3.12 Suppose the KnotLink Game is played on a standard diagram of a twist
knot with p + 2 crossings. Then the Complicator has a winning strategy if and only if p
is even and the Simplifier moves first.

So, for example, in our sample game, our two players played on a twist knot with
p = 5. Since p is odd in this game, the Simplifier has a winning strategy regardless of
if they move first or second. So, unfortunately, the Complicator couldn’t have done any
better in this game if the Simplifier is playing well.

4 Conclusion

In the previous section, we proved results for two knot and link families, the (2, p)-torus
knots/links and the (p, q) rational knots/links. In fact, the (2, p)-torus knots/links are
rational knots and links given by the 1-tuple (p), so we have found winning strategies for
rational knot and link families given by (p1, p2, ..., pn) for n = 1 and n = 2. The next
natural question is: what about n = 3? Who has a winning strategy when playing on
rational knots and links of the form (p, q, r) for various choices of parity of p, q, and r and
a choice of which player moves first? A more ambitious team of researchers might ask:
what about for an arbitrary n? Can a characterization be given for when the Simplifier
has a winning strategy and when the Complicator has a winning strategy?

Of course, there are many more knot and link shadows (infinitely many!) that don’t
look like these standard rational knot and link shadows. Each shadow represents an
interesting open question. Given this abundance of open questions, we invite others to
play with us!
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