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Abstract - Monoids arise in such fields as computer science, physics, and numerous
branches of mathematics including abstract algebra, cryptography and operator theory. In
this research project we seek to determine minimal generating sets for the monoid of partial
order-preserving injections of an n-element set, POI(n). A generating set for a monoid is a
collection of elements S such that every element of the monoid can be expressed as a product
of elements from S. Generating sets are of fundamental importance across math and science,
and mathematicians have great interest in studying generating sets of a variety of algebraic
structures. By a minimal generating set, we refer to a generating set for which no proper
subset is a generating set. In this paper, we provide necessary and sufficient conditions for a
set to be a minimal generating set for POI(n), and we show that there are exactly (n− 1)!
minimal generating sets for POI(n).
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1 Introduction

Partial order-preserving injections comprise an important subset of the collection of all
partial injections from a set to itself. This latter collection forms a monoid (defined below)
into which any inverse monoid can be embedded [5]. Embeddings preserve algebraic
structure, so that the collection of all partial injections on a set becomes a central object
of study in the theory of inverse monoids. In this paper, we will be specifically studying
the monoid consisting of partial order-preserving injections. These order-preserving maps
often arise in the context of studying transformations of partially ordered sets. With this
motivational background, let us turn to a brief review of basic concepts in the theory of
monoids.

Definition 1.1 A monoid is a non-empty set M together with a binary operation ∗ that
satisfies the following axioms:

1) Closure: If a, b ∈M, then a ∗ b ∈M .

2) Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, and c ∈M .
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3) Existence of an Identity: An element e ∈ M is called the identity element if
a ∗ e = a = e ∗ a for every a ∈M .

Example 1.2 The set of positive real numbers under multiplication, (R+,×), is a classic
example of a monoid, with identity element 1.

Example 1.3 Note (R+,+) is not a monoid since 0 does not belong to R+. However,
([0,∞),+) is a monoid with identity element 0.

Note that the monoid in Example 1.3 forms a submonoid of (R,+), since it is a subset
of R that forms a monoid under +.

Definition 1.4 A semigroup is a non-empty set S that satisfies the closure and asso-
ciativity axioms in Definition 1.1. Thus, every monoid is a semigroup.

Any semigroup can be made into a monoid by adjoining an identity element. In Example
1.3, for instance, starting with the semigroup (R+,+), we form the monoid ([0,∞),+) =
(R+ ∪ {0},+).

Example 1.5 Let X be a non-empty set. An expression of the form x1x2x3 · · ·xn (with
xi ∈ X) is called a word on the alphabet X. The set of all words on X is the free
semigroup on X, denoted X+. We can form a monoid by adjoining an empty word, say
Λ, to X+. This monoid, denoted X∗, is called the free monoid on X.

The operation in X+ and X∗ is concatenation. If we let X be the English alphabet of
lowercase letters, then some elements of X+ are

road ∗ runner = roadrunner,

aababba ∗ babbba = aababbababbba.

Note that we often omit the operation ∗ from the notation when the operation is known.
Thus, for instance, we may write a ∗ b simply as ab.

Example 1.6 The symmetric inverse monoid, SIM(S), consists of all partial in-
jections from a set S to itself. The operation on SIM(S) is given by composition of
mappings, where we will adopt the convention that mappings are composed from left to
right.

The monoid SIM(S) is of great relevance to this paper. Therefore, let us take some
time to elaborate on its structure. Consider the particular case where S = {1, 2, 3, . . . , n},
denoted as SIM(n). The identity element of SIM(n) is the element that fixes each element
of the set {1, 2, 3, . . . , n}. The elements of SIM(n) can be represented by a classic two-line
notation. For example,
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τ =

(
1 2 3 4 5 6
2 1 4 6 − 5

)
∈ SIM(6). (1)

In this element, we observe that 1 maps to 2, 2 maps to 1, 3 maps to 4, 4 maps to 6,
5 is not in the domain, and 6 maps to 5. We denote the domain of τ by Dom(τ) and the
range of τ by Rng(τ).

Definition 1.7 The rank of an element τ ∈ SIM(S) is

rank(τ) = |Dom(τ)| = |Rng(τ)|.

In (1), rank(τ) = 5. Also, note that the set of all elements in SIM(n) of rank n forms
the well-known group called the symmetric group, denoted Sn. Consult any introductory
text on modern algebra for more information([6], [8]).
To illustrate how composition of partial permutations works, consider this example:1 2 3 4 5 6

3 4 − 5 6 −

1 2 3 4 5 6

2 1 4 6 − 5

 =

1 2 3 4 5 6

4 6 − − 5 −

 .

Of course, the rank of the composition of two partial mappings cannot exceed the rank
of either element comprising the product. Here, for example, we see that the elements on
the left side have rank 4 and 5, respectively, while the resulting product on the right side
only has rank 3.

There are some fundamental equivalence relations which help us understand the struc-
ture of semigroups and monoids. These are known as the Green’s relations [5]. To
discuss these, we need some notation: given a monoid M and t ∈M , denote Mt = {mt :
m ∈M} and tM = {tm : m ∈M}. Now, let α, β ∈M . Then

1. α and β are L-related, denoted α L β, if and only if there exist x, y ∈M such that
xα = β, yβ = α. That is, β ∈Mα and α ∈Mβ.

2. α and β are R-related, denoted α R β, if and only if there exist u, v ∈M such that
αu = β, βv = α. That is, β ∈ αM and α ∈ βM .

3. The D-relation, D = L ◦R = R ◦L, is the smallest equivalence relation containing
both L and R.

4. The H-relation is the intersection of L and R. That is, α and β are H-related,
denoted α H β, if and only if α L β and α R β.

The Green’s relations are equivalence relations, and hence form equivalence classes,
which we will refer to as L-classes, R-classes, D-classes, and H-classes.

We are now ready to begin studying the particular monoid of interest to us in our
research, and in the next section, we will determine its Green’s relations.
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2 Partial Order-preserving Injections

The monoid of interest to our research is the monoid of partial order-preserving
injections, denoted by POI(n), which is a submonoid of SIM(n). An element σ of
SIM(n) is an element of POI(n) if whenever i < j in {1, 2, 3, . . . , n}, then σ(i) < σ(j).
For example,

σ =

(
1 2 3 4 5 6
3 4 − 5 6 −

)
∈ POI(6),

since the values on the second row appear in increasing order. However, the element τ in
(1) is not an element of POI(6).

Definition 2.1 A partial identity in POI(n) is an element σ such that for every in-
teger i with 1 ≤ i ≤ n, we have either σ(i) = i or i /∈ Dom(σ).

As we will see in our main results, partial identities play an important role in describing
minimal generating sets of POI(n). An example of a partial identity is the element

τ =

(
1 2 3 4 5 6
1 − 3 − 5 −

)
∈ POI(6),

whose rank is 3. Throughout this paper, we denote the subset of POI(n) of elements of
rank k as POIk(n). For example, rank(τ) = 3, so τ ∈ POI3(6). Note that

POI(n) =
n⋃

k=0

POIk(n),

and thus,

|POI(n)| =
n∑

k=0

(
n

k

)2

=

(
2n

n

)
,

where the first equality can be found in [1] and the second is a well-known combinatorial
formula that can be proven either by a routine application of induction or by a combina-
torial argument. Note that the kth term of the summation counts the number of elements
in POIk(n). For example,

|POI(4)| =
4∑

k=0

(
4

k

)2

=

(
4

0

)2

+

(
4

1

)2

+

(
4

2

)2

+

(
4

3

)2

+

(
4

4

)2

=

(
8

4

)
= 70.

We now look at the Green’s relations for the monoid POI(n). The next lemma
summarizes the results. The proof is routine and is omitted.
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Lemma 2.2 Let α, β ∈ POI(n). Then:

• α R β if and only if Dom(α) = Dom(β).

• α L β if and only if Rng(α) = Rng(β).

• α D β if and only if rank(α) = rank(β).

• α H β if and only if α = β.

We give some examples of the R and L relations in POI(n).

Example 2.3 Let

α =

(
1 2 3 4 5 6 7
2 4 5 6 7 − −

)
and β =

(
1 2 3 4 5 6 7
2 3 4 5 6 − −

)
in POI(7). Since

α

(
1 2 3 4 5 6 7
− 2 − 3 4 5 6

)
= β

and

β

(
1 2 3 4 5 6 7
− 2 4 5 6 7 −

)
= α,

we see that α R β.

Example 2.4 Let

σ =

(
1 2 3 4 5 6 7 8
3 4 5 6 − − 7 8

)
and γ =

(
1 2 3 4 5 6 7 8
3 − 4 5 6 7 8 −

)
in POI(8). We have (

1 2 3 4 5 6 7 8
1 − 2 3 4 7 8 −

)
σ = γ

and (
1 2 3 4 5 6 7 8
1 3 4 5 − − 6 7

)
γ = σ,

so we conclude that σ L γ.

Remark 1. Let k ∈ {1, 2, . . . , n}, and let α, β ∈ POIk(n). Then αβ ∈ POIk(n) if and
only if Rng(α) = Dom(β). In this case, α R αβ and β L αβ.

We will now turn our attention to the main problem in this paper, the identification
of minimal generating sets for POI(n).
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Definition 2.5 A generating set for an algebraic structure Z (such as a group, semi-
group, monoid, vector space, and so on) is a collection C of elements in Z such that each
element in Z can be expressed by applying a finite sequence of algebraic operations to
elements in C.

In linear algebra, for example, a generating set for a vector space is commonly known as
a spanning set.

Definition 2.6 A generating set for Z is called an minimal generating set if no
proper subset of it generates Z.

The search for minimal generating sets of algebraic structures has led to a steady stream
of work and has important applications in mathematics and computer science. In [2],
these sets were classified for SIM(n), while in [3], they were studied in the symmetric
and alternating groups.

Returning to our study of POI(n), observe that POIn(n) consists only of the identity
element

id =

(
1 2 3 · · · n− 1 n
1 2 3 · · · n− 1 n

)
.

This element is uninteresting with respect to the generating process, so we will focus our
attention on generating the set POI(n)−{id}. For the remainder of this paper, when we
speak of generating POI(n), we will mean that we are generating POI(n)− {id}, which
itself is a subsemigroup of POI(n). The key to generating POI(n)− {id} is to generate
all of the rank n − 1 elements first. In fact, it is customary to restrict generating sets
of POI(n) to consist of elements of rank n − 1. By multiplying elements of POIn−1(n)
together, we can obtain elements of lower rank (see Remark 1). We arrange the elements
in POIn−1(n) in an n×n array as shown in Figure 1 for POI(4). Elements in the same row
have the same domain, elements in the same column have the same range, and elements
on the main diagonal are partial identities. Let

Ŝi = {1, 2, . . . , i− 1, i+ 1, . . . , n− 1, n}

for 1 ≤ i ≤ n. For example, for n = 4, if

σ =

(
1 2 3 4
2 3 − 4

)
, (2)

then Dom(σ) = Ŝ3 and Rng(σ) = Ŝ1.
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Figure 1: 4× 4 array of the elements in POI3(4)

Note that if σ is an element of POIn−1(n) with Dom(σ) = Ŝi and Rng(σ) = Ŝj, then
we can uniquely denote σ as the pair of numbers (i, j). For example, the element σ in (2)
can now be represented as σ = (3, 1).

Notation: Let X be a subset of POIn−1(n). Let ΩX denote a directed graph on

{1, 2, . . . , n}, where a b is a directed edge in ΩX if and only if (a, b) ∈ X.
If σ = (a, b) and τ = (c, d) are two elements of POIn−1(n), then note that στ =
(a, b)(c, d) = (a, d) if b = c. If b 6= c, by Remark 1 the rank of στ drops and we do
not express στ in this ordered pair notation. Multiplication can now be performed by
following directed edges, as shown in our next examples.

Example 2.7 In POI(4),(
1 2 3 4
2 3 − 4

)(
1 2 3 4
− 1 2 3

)
=

(
1 2 3 4
1 2 − 3

)
can be expressed as (3, 1)(1, 4) = (3, 4), which is represented graphically as

4 3

21 (3)

In (3), the dotted arrow indicates the result of the composition of the two solid arrows.

Example 2.8 Again in POI(4),(
1 2 3 4
− 1 2 3

)(
1 2 3 4
1 2 4 −

)(
1 2 3 4
1 3 − 4

)
=

(
1 2 3 4
− 1 3 4

)
can be represented as (1, 4)(4, 3)(3, 2) = (1, 2), which is represented graphically as
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4 3

21 (4)

In (3) and (4), the solid directed edges form an example of a walk [4].

Definition 2.9 A walk is a sequence of m edges of the form

x0 → x1 → x2 → · · · → xm,

where x0, x1, x2, . . . , xm are (not necessarily distinct) vertices, and xi → xj indicates that
there is an edge from xi to xj. If x0 = xm, then the walk is closed.

a

bc

d

e f

Figure 2: An example of a directed graph

For example, in Figure 2 we have a walk c → b → e → d → c → a. Note that if we
remove the edge c→ a, we have a closed walk: c→ b→ e→ d→ c.

Definition 2.10 If a walk is composed of distinct edges and has distinct vertices, then it
is called a path. That is, in a path we have xi 6= xj for 0 ≤ i < j ≤ m, except possibly
for x0 = xm. In the case where x0 = xm, the path is closed and usually referred to as a
cycle or m-cycle.

In Figure 2, we have the path e→ d→ c→ b and the 4-cycle e→ d→ c→ b→ e.
Shortly, we will see how this basic graph theory can help us describe minimal gener-

ating sets of POI(n). Our results were first motivated by studying output results from a
program written using the programming language Groups, Algorithms, and Programming
(GAP) [7]. The program explicitly computed all possible generating sets for POI(n) for
small integers n. Let us now describe the main results we obtained.
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3 Main Theorems

Our first result provides a necessary condition for a subset X ⊆ POIn−1(n) to be a
minimal generating set for POI(n).

Lemma 3.1 Let X be a subset of POIn−1(n) consisting of n elements that generate
POI(n). Then X contains (a) no two distinct R-related elements, (b) no two distinct
L-related elements, and (c) no partial identities.

Proof.
We prove all three parts by way of contradiction. First, to prove part (a), we assume

that there are two R-related elements in X. Using Lemma 2.2, we deduce that for some
i ∈ {1, 2, . . . , n}, the subset Ŝi is the domain for no elements in X. Let γ ∈ POIn−1(n)

be any element such that Dom(γ) = Ŝi. Write γ = (i, b). Since X is a generating set,
then there exist ξ1, ξ2, . . . , ξk ∈ X such that

γ = ξ1ξ2 · · · ξk.

Clearly, each ξj must belong to POIn−1(n). Therefore, writing ξj = (xj1, xj2) for each j
with 1 ≤ j ≤ k, we have

γ = (x11, x12)(x21, x22) · · · (xk1, xk2) = (i, b),

where xj2 = x(j+1)1 for each j with 1 ≤ j < k. It follows that i = x11, and thus

Dom((x11, x12)) = Ŝi, which is a contradiction.
Similarly, for part (b), assume X contains two L-related elements. Again by Lemma

2.2, there is some subset Ŝi that no element in X has as its range. Let α ∈ POIn−1(n) be

any element such that Rng(α) = Ŝi. Write α = (a, i). Then there exist ξ1, ξ2, . . . , ξk ∈ X
such that α = ξ1ξ2 · · · ξk. Writing ξj = (xj1, xj2) as before, we have

α = (x11, x12)(x21, x22) · · · (xk1, xk2) = (a, i),

where xj2 = x(j+1)1 for each 1 ≤ j < k. It follows that i = xk2, which implies

Rng((xk1, xk2)) = Ŝi, which is a contradiction.
Finally, we prove part (c). Assume X contains a partial identity element, say ω =

(a, a), which fixes the elements of Ŝa. Choose any element γ = (a, b) ∈ POIn−1(n) with
γ 6= ω. Then, following the notation above, γ can be expressed as

γ = ξ1ξ2 · · · ξk = (x11, x12)(x21, x22) · · · (xk1, xk2) = (a, b).

As above, we get a = x11. By part (a), the only element of X of the form (a, y) is the
partial identity (a, a). Therefore, it must be the case that (x11, x12) = ω. Hence,

γ = (a, a)(x21, x22) · · · (xk1, xk2).
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Now we deduce that x21 = a, and we can repeat the same reasoning as above to conclude
that x22 = a. Therefore,

γ = (a, a)(a, a) · · · (xk1, xk2).

Proceeding in this way, we eventually have

γ = (a, a)(a, a) · · · (a, a) = (a, a) = ω,

a contradiction. �
As a consequence of the proof of Lemma 3.1, observe that every Ŝi (for 1 ≤ i ≤ n)

must be the domain of some generator in a generating set POI(n). This therefore proves
the following:

Corollary 3.2 Every generating set of POI(n) must contain at least n elements.

We are now ready to state and prove the central result of this paper.

Theorem 3.3 Let X be a subset of n elements of POIn−1(n) with no two distinct R-
related elements, no two distinct L-related elements, and no partial identities. Then X is
a minimal generating set for POI(n) if and only if the edges of ΩX form an n-cycle.

Proof. First, assume X is a minimal generating set for POI(n). The assumption that
X has no partial identities and that no two distinct members of X are R-related or L-
related implies that no vertex in ΩX can have in-degree or out-degree exceeding 1. As
a result, ΩX is a union of disjoint directed cycles. If we assume by way of contradiction
that the edges of ΩX do not form an n-cycle, this implies that we must have at least two
smaller cycles, say C1 and C2, of lengths n1 and n2, respectively. Let us choose an element
(a, b) ∈ POIn−1(n), where a is a vertex of the n1-cycle C1 and b is a vertex of the n2-cycle
C2. Since X is a generating set, we can express (a, b) as a product of generators:

(a, b) = (x11, x12)(x21, x22) · · · (xk1, xk2).

However, since x11 = a is a vertex in C1, then x12 is also a vertex in C1, which implies
(x11, x12) is a directed edge in ΩX − C2. Similarly, since x12 = x21 is a vertex in C1

then x22 = x31 is a vertex in C1 which implies (x21, x22) is a directed edge in ΩX − C2.
Continuing this process, we find that (xk1, xk2) is a directed edge in ΩX − C2, which is a
contradiction to the fact that xk2 = b is a vertex in C2. Hence, ΩX forms an n-cycle.

Now assume that the edges of ΩX form an n-cycle. To show that X is a generating set,
let (a, b) be an arbitrary element in POIn−1(n). Since the edges of ΩX form an n-cycle,
then we have a cycle of the form

x1 → x2 → · · · → xi−1 → a→ xi+1 → · · · → xj−1 → b→ xj+1 → · · · → xn → x1.

Clearly, there is a path from a to b; namely,

a→ xi+1 → · · · → xj−1 → b.
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Therefore, (a, b) can be generated by X as

(a, b) = (a, xi+1)(xi+1, xi+2) · · · (xj−1, b).

Once all the elements of POIn−1(n) − {id} are generated, there is a straightforward
algorithm for generating all of the elements of POIk(n) for k ≤ n − 2. We describe this
algorithm here and Example 3.4 following the proof will illustrate it.

First, it is easy to generate all partial identity elements of all ranks by simply mul-
tiplying together the appropriate partial identities of rank n − 1. Now consider any
element σ ∈ POIk(n) for k ≤ n − 2. Let τ ∈ POIk(n) be a partial identity element
with Dom(τ) = Dom(σ). Let Rng(σ) = {a1, a2, . . . , ak} and Rng(τ) = {b1, b2, . . . , bk}
with a1 < a2 < · · · < ak and b1 < b2 < · · · < bk. We now conduct a series of steps that
correspond to right-multiplication of τ by elements of rank n − 1 to replace the k-tuple
[b1, b2, . . . , bk] with [a1, a2, . . . , ak] in the range. This is accomplished by changing exactly
one entry of the k-tuple at a time by exactly one number in such a way that the increasing
ordering of the entries of the k-tuple is maintained. To change bi to bi± 1, we use the ele-
ment of rank n−1 denoted in the pair notation γ = (bi±1, bi). A direct calculation verifies
that Dom(τγ) = Dom(τ) and Rng(τγ) = {b1, b2, . . . , bi−1, bi± 1, bi+1, . . . , bk}. Therefore,
we can construct a finite series of elements γ1, γ2, . . . , γr belonging to POIn−1(n) such
that

Dom(τγ1γ2 · · · γr) = Dom(τ) = Dom(σ)

and
Rng(τγ1γ2 · · · γr) = Rng(σ).

This implies that
σ = τγ1γ2 · · · γr. (5)

Since τ is a partial identity and each γi has rank n − 1, we can see from (5) that σ is
generated by elements in POIn−1(n). This proves that X is a generating set for POI(n),
and since X contains exactly n elements by assumption, Corollary 3.2 implies that X is
a minimal generating set. �

Example 3.4 Let σ =

(
1 2 3 4 5 6
− − 1 5 6 −

)
∈ POI(6). Here, we start with the partial

identity τ =

(
1 2 3 4 5 6
− − 3 4 5 −

)
. Clearly, Dom(τ) = Dom(σ). We now carry out the

series of steps described in the algorithm in the proof of Theorem 3.3 to replace [3, 4, 5]
with [1, 5, 6]. One way to do this is via the replacements

[3, 4, 5] −→ [2, 4, 5] −→ [1, 4, 5] −→ [1, 4, 6] −→ [1, 5, 6].

According to the algorithm, these four steps can be accomplished by right-multiplication
by the elements

γ1 = (2, 3), γ2 = (1, 2), γ3 = (6, 5), γ4 = (5, 4).
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We can easily compute that indeed we have

τγ1γ2γ3γ4 = σ.

Let us now illustrate some examples of Theorem 3.3.

Example 3.5 The set

X =


(

1 2 3 4
− 1 2 3

)
,

(
1 2 3 4
1 2 4 −

)
,

(
1 2 3 4
1 3 − 4

)
,

(
1 2 3 4
2 − 3 4

)
(1, 4) (4, 3) (3, 2) (2, 1)


forms a generating set for POI(4) since the edges of the graph ΩX form a 4-cycle. By
composing these edges, we can then generate all 16 edges of POI3(4) to get:

2

3

4

1

Figure 3: A graphical example of a generating set of POI(4)

Here, the solid directed arrows belong to the generating set, while the dotted directed
arrows represent the remaining elements of POI3(4).
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Example 3.6 The set X given by
(

1 2 3 4 5
1 2 4 5 −

)
,

(
1 2 3 4 5
1 2 3 − 4

)
,

(
1 2 3 4 5
2 3 − 4 5

)
,

(
1 2 3 4 5
1 − 2 3 5

)
,

(
1 2 3 4 5
− 1 3 4 5

)
(5, 3) (4, 5) (3, 1) (2, 4) (1, 2)


forms a generating set for POI(5) since the edges of the graph ΩX form a 5-cycle. From
this 5-cycle, we can generate the remaining 20 edges that correspond to the remaining 20
elements of POI4(5):

3

4

5

1

2

Figure 4: A graphical representation of a generating set of POI(5)

As in Example 3.5, the solid directed arrows belong to the generating set, while the
dotted directed arrows represent the remaining elements of POI4(5).

Example 3.7 The set X given by
(

1 2 3 4 5
1 2 4 5 −

)
,

(
1 2 3 4 5
1 2 − 3 4

)
,

(
1 2 3 4 5
2 3 4 − 5

)
,

(
1 2 3 4 5
− 1 3 4 5

)
,

(
1 2 3 4 5
1 − 2 3 5

)
(5, 3) (3, 5) (4, 1) (1, 2) (2, 4)


is not a generating set for POI(5) since ΩX forms two subcycles of the 5-cycle. By
composing the edges in these subcycles we only generate 13 out of the 25 edges of POI4(5),
as shown in Figure 5.
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3

4

5

1

2

.

Figure 5: A graphical representation of a non-generating set of POI(5)

Theorem 3.8 POI(n) has (n− 1)! minimal generating sets.

Proof. From Theorem 3.3, we see that the number of minimal generating sets of POI(n)
is equal to the number of directed n-cycles that can be put on n vertices. It is a well-known
observation in combinatorics that (n− 1)! such directed n-cycles can be constructed. �
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