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Abstract - A numerical semigroup is a cofinite subset of N0, containing 0, that is closed
under addition. Its genus is the number of nonnegative integers that it does not contain. A
numerical set is a similar object, not necessarily closed under addition. If T is a numerical
set, then A(T ) = {n ∈ N0 : n+T ⊆ T} is a numerical semigroup. Recently a paper appeared
counting the number of numerical sets T where A(T ) is a numerical semigroup of maximal
genus. We count the number of numerical sets T where A(T ) is a numerical semigroup of
almost-maximal genus, i.e. genus one smaller than maximal.
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1 Introduction

A numerical set is a cofinite subset of the nonnegative integers N0 containing 0. A nu-
merical set closed under addition is called a numerical semigroup. The maximum integer
missing from a numerical set or semigroup is called its Frobenius number. The number
of positive integers that a numerical set or semigroup does not contain is called its genus.
Numerical semigroups have been the subject of considerable study (e.g. [2, 4]); for a
general reference see [1] or [6].

Let T be a numerical set. Set A(T ) = {n ∈ N0 : n + T ⊆ T}. This is known
to be a numerical semigroup, called its atom monoid, with A(T ) ⊆ T . For a fixed
numerical semigroup S, we write N(S) to denote the number of numerical sets T satisfying
A(T ) = S. Numerical sets and their atom monoids have been of interest lately due to
their connection with core partitions (see [3]).

Fairly recently [5] appeared, which fixed the Frobenius number f and considered all
2f−1 numerical sets with that Frobenius number. It focused on the numerical semigroup
with Frobenius number f and maximal genus, i.e. Sf = {0, f+1, f+2, . . .} = {0, f+1,→}.
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It determined bounds on N(Sf ), and also found the asymptotic limit limf→∞
N(Sf )

2f−1 to be
approximately 0.48.

We wish to extend this work with Frobenius number f , from the maximum genus of
f to the almost-maximum genus of f − 1. Hence, we consider the semigroups Sf (l) =
{0, f − l, f + 1,→}. We call a numerical set T with A(T ) = Sf (l) both (f, l)-good and f -
good. We set N(Sf (l)) to denote the number of (f, l)-good numerical sets, and N(Sf (?))
to denote the number of f -good numerical sets (over all l). We now look for bounds for

N(Sf (l)) and N(Sf (?)), as well as the asymptotic limit limf→∞
N(Sf (?))

2f−1 . We first observe

that if l ≥ f
2
, then (f − l) + (f − l) ∈ Sf (l), as this is a semigroup and hence closed under

addition; this will render the result no longer of the desired genus. Hence we must have
l < f

2
, and thus N(Sf (?)) = N(Sf (1)) + N(Sf (2)) + · · ·+ N(Sf (bf−1

2
c)).

For a numerical set T and x ∈ T , we say that y is a witness to x if y ∈ T and x+y /∈ T .
This leads to a simple characterization of A(T ), for all numerical sets.

Proposition 1.1 Given numerical set T and x ∈ T , x /∈ A(T ) if and only if there is
some witness to x.

Proof. If y is a witness to x, then x+ y ∈ x+ T but x+ y /∈ T , so x /∈ A(T ). If there is
no witness to x, then for all y ∈ Z, if y ∈ T then x + y ∈ T ; hence x + T ⊆ T and thus
x ∈ A(T ). �

Suppose that T is an (f, l)-good numerical set. For x = f − l and for x > f , we must
have x ∈ T since A(T ) ⊆ T . Also, f /∈ T since T,A(T ) share the same Frobenius number.

We now present a result specific to our Sf (l) context.

Proposition 1.2 Let T be an (f, l)-good numerical set, and x ∈ Z. If x ∈ T then
x + f − l ∈ T .

Proof. If x + f − l /∈ T , then x would be a witness to f − l, and hence f − l /∈ T . But
this is impossible since T is (f, l)-good. �

2 Upper Bounds

In this section we provide some structural information about (f, l)-good sets, as well as
an upper bound for their number.

Recall that if T is an (f, l)-good numerical set, then f − l ∈ T . Hence l /∈ T , or else
by Proposition 1.2 we would have l + (f − l) = f ∈ T . Set

Y = {1, 2, . . . , l − 1} ∪ {l + 1, . . . , f − l − 1} ∪ {f − l + 1, . . . , f − 1},

a union of three intervals of length l− 1, f − 2l− 1, and l− 1, respectively. All (f, l)-good
numerical sets consist of a subset of Y , together with all of Sf (l). Hence, naively we get
an upper bound for N(Sf (l)) of 2|Y | = 2f−3. We use Proposition 1.2 to improve this.

Theorem 2.1 For fixed l, f , the number of (f, l)-good numerical sets N(Sf (l)) satisfies

N(Sf (l)) ≤ 3l−12f−2l−1.
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Proof. For each x ∈ {1, 2, . . . , l − 1}, we have x + f − l ∈ {f − l + 1, . . . , f − 1}.
This yields l − 1 pairs {x, x + f − l}. By Proposition 1.2, if T is (f, l)-good and x ∈ T ,
then x + f − l ∈ T . Hence each pair gives three possibilities: neither element in T , both
elements in T , or just x + f − l ∈ T . The fourth possibility, of just x ∈ T , is forbidden.
This reduces the naive upper bound by a factor of (3/4)l−1. �

Corollary 2.2 For a fixed f , the number of f -good numerical sets N(Sf (?)) satisfies

N(Sf (?)) ≤ 2f−1

1−

(√
3

2

)f−1
 .

Proof. Set t = b(f − 1)/2c, and we have

N(Sf (?)) =
t∑

l=1

N(Sf (l)) ≤
t∑

l=1

3l−12f−2l−1 =
2f−1

3

t∑
l=1

(
3

4

)l

=
2f−1

3

3
4
−
(
3
4

)t+1

1− 3
4

= 2f−1

(
1−

(
3

4

)t
)
≤ 2f−1

(
1−

(
3

4

) f−1
2

)
�

Corollary 2.2 bounds N(Sf (?)) away from its maximum value of 2f−1, proving that not
all numerical sets are good1. Unfortunately, it is not sufficient to bound the asymptotic

limit limf→∞
N(Sf (?))

2f−1 away from 1, much less away from 0.52.

3 Lower Bounds

We now turn to a lower bound for N(Sf (l)), which we provide in the following.

Theorem 3.1 For fixed l, f , the number of (f, l)-good numerical sets N(Sf (l)) satisfies

N(Sf (l)) ≥ 2d
l−1
2
e+d f−2l−1

2
e.

Proof. We will define d l−1
2
e + df−2l−1

2
e subsets of Y , each of which may independently

be included, or not, in an (f, l)-good numerical set.
First, for x ∈ {1, 2, . . . , d l−1

2
e}, we consider the set

Qx = {x, f − x, x + f − l, l − x}.

Note that since 1 ≤ x ≤ l
2
, f − l

2
≤ f − x ≤ f − 1 and f − l + 1 ≤ x + f − l ≤ f − l

2
and

l
2
≤ l − x ≤ l − 1. Consequently, x ≤ l − x < x + f − l ≤ f − x. In particular, Qx 6= Qy

for x 6= y, and |Qx| = 4 (unless x = l
2
, in which case |Qx| = 2). Also, note that⋃

Qx = {1, 2, . . . , l − 1} ∪ {f − l + 1, . . . , f − 1},

1Not a major observation, in light of the bound in [5].
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leaving the subset {l + 1, . . . , f − l − 1} of Y undisturbed. Note that for each y ∈ Qx,
also f − y ∈ Qx, and these are witnesses for each other as their sum is f /∈ T . Hence, if
Qx ⊆ T , then Qx ∩ A(T ) = ∅.

Now, for x ∈ {l + 1, . . . , df−1
2
e}, we consider the set Rx = {x, f − x}. Note that since

l + 1 ≤ x ≤ f
2
, f

2
≤ f − x ≤ f − l − 1. Consequently, Rx 6= Ry for x 6= y, and |Rx| = 2

(unless x = f
2
, in which case |Rx| = 1). Note that⋃

Rx = {l + 1, l + 2, . . . , f − l − 1},

so Rx ∩ Qy = ∅ for all x, y. For each y ∈ Rx, also f − y ∈ Rx. These are witnesses for
each other, and so if Rx ⊆ T , then Rx ∩ A(T ) = ∅.

Let T contain Sf (l), together with an arbitrary collection of the subsets Qx, Rx. In
particular, l, f /∈ T and f − l ∈ T . By the above, Y ∩ A(T ) = ∅. It is easy to see that
0 ∈ A(T ), f /∈ A(T ), and x ∈ A(T ) for all x > f .

The only remaining concern is to prove that f − l ∈ A(T ). Suppose instead that
f − l /∈ A(T ). Then there would be some witness y ∈ T with y + f − l /∈ T . Note that if
y ≥ l + 1, then y + f − l ≥ f + 1, and so y + f − 1 ∈ T and y cannot be a witness. In
particular, it could not be among the Rx sets. If there is some x with y ∈ Qx, then either
y = x or y = l − x (else y ≥ l + 1 again). But for both of these choices, y + f − l ∈ Qx

again, so y is again not a witness. Hence f − l ∈ A(T ). �

Corollary 3.2 For a fixed f , the number of f -good numerical sets N(Sf (?)) satisfies

N(Sf (?)) ≥ 2
f−3
2

√
2− 1

(
1− 2−

f−2
4

)
.

Proof. We begin with
⌈
l−1
2

⌉
+
⌈
f−2l−1

2

⌉
≥ f−l−2

2
. Set t = b(f − 1)/2c, and we have

N(Sf (?)) =
t∑

l=1

N(Sf (l)) ≥ 2(f−2)/2
t∑

l=1

2−l/2

The sum is a geometric series, and thus

N(Sf (?)) ≥ 2(f−2)/22−
1
2 − 2

−t−1
2

1− 2−
1
2

=
2

f−3
2

√
2− 1

(
1− 2−

t
2

)
≥ 2

f−3
2

√
2− 1

(
1− 2−

f−2
4

)
�

Although Corollary 3.2 provides a nontrivial lower bound for N(Sf (?)), it is not suf-

ficient to bound the asymptotic limit limf→∞
N(Sf (?))

2f−1 away from 0. We conjecture that

this holds, and, more strongly, that for a fixed l, limf→∞
N(l,f)
2f−1 ∈ (0, 1).

We lastly observe that preprint [7] has very recently been made public, extend-
ing the above work, addressing our conjectures, and bounding the asymptotic limit

limf→∞
N(Sf (?))

2f−1 away from 0.
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