On Numerical Semigroups with Almost-Maximal Genus

J. ARROYO, J. AUTRY, C. CRANDALL, J. LEFLER, AND V. PONOMARENKO^{*}

Abstract - A numerical semigroup is a cofinite subset of \mathbb{N}_0 , containing 0, that is closed under addition. Its genus is the number of nonnegative integers that it does not contain. A numerical set is a similar object, not necessarily closed under addition. If T is a numerical set, then $A(T) = \{n \in \mathbb{N}_0 : n+T \subseteq T\}$ is a numerical semigroup. Recently a paper appeared counting the number of numerical sets T where A(T) is a numerical semigroup of maximal genus. We count the number of numerical sets T where A(T) is a numerical semigroup of almost-maximal genus, i.e. genus one smaller than maximal.

Keywords : numerical semigroup; numerical set; genus; atom monoid

Mathematics Subject Classification (2020) : 20M14

1 Introduction

A numerical set is a cofinite subset of the nonnegative integers \mathbb{N}_0 containing 0. A numerical set closed under addition is called a numerical semigroup. The maximum integer missing from a numerical set or semigroup is called its Frobenius number. The number of positive integers that a numerical set or semigroup does not contain is called its genus. Numerical semigroups have been the subject of considerable study (e.g. [2, 4]); for a general reference see [1] or [6].

Let T be a numerical set. Set $A(T) = \{n \in \mathbb{N}_0 : n + T \subseteq T\}$. This is known to be a numerical semigroup, called its atom monoid, with $A(T) \subseteq T$. For a fixed numerical semigroup S, we write N(S) to denote the number of numerical sets T satisfying A(T) = S. Numerical sets and their atom monoids have been of interest lately due to their connection with core partitions (see [3]).

Fairly recently [5] appeared, which fixed the Frobenius number f and considered all 2^{f-1} numerical sets with that Frobenius number. It focused on the numerical semigroup with Frobenius number f and maximal genus, i.e. $S_f = \{0, f+1, f+2, \ldots\} = \{0, f+1, \rightarrow\}$.

^{*}This work was supported by an REU grant (NSF grant No. 1851542)

The pump journal of undergraduate research 3 (2020), 62–67

It determined bounds on $N(S_f)$, and also found the asymptotic limit $\lim_{f\to\infty} \frac{N(S_f)}{2^{f-1}}$ to be approximately 0.48.

We wish to extend this work with Frobenius number f, from the maximum genus of f to the almost-maximum genus of f-1. Hence, we consider the semigroups $S_f(l) = \{0, f-l, f+1, \rightarrow\}$. We call a numerical set T with $A(T) = S_f(l)$ both (f, l)-good and f-good. We set $N(S_f(l))$ to denote the number of (f, l)-good numerical sets, and $N(S_f(\star))$ to denote the number of (f, l)-good numerical sets, and $N(S_f(\star))$ to denote the number of (f, l)-good numerical sets, and $N(S_f(\star))$ to denote the number of (f, l)-good numerical sets, and $N(S_f(\star))$ to denote the number of f-good numerical sets (over all l). We now look for bounds for $N(S_f(l))$ and $N(S_f(\star))$, as well as the asymptotic limit $\lim_{f\to\infty} \frac{N(S_f(\star))}{2^{f-1}}$. We first observe that if $l \geq \frac{f}{2}$, then $(f-l) + (f-l) \in S_f(l)$, as this is a semigroup and hence closed under addition; this will render the result no longer of the desired genus. Hence we must have $l < \frac{f}{2}$, and thus $N(S_f(\star)) = N(S_f(1)) + N(S_f(2)) + \cdots + N(S_f(\lfloor \frac{f-1}{2} \rfloor))$.

For a numerical set T and $x \in T$, we say that y is a witness to x if $y \in T$ and $x + y \notin T$. This leads to a simple characterization of A(T), for all numerical sets.

Proposition 1.1 Given numerical set T and $x \in T$, $x \notin A(T)$ if and only if there is some witness to x.

Proof. If y is a witness to x, then $x + y \in x + T$ but $x + y \notin T$, so $x \notin A(T)$. If there is no witness to x, then for all $y \in \mathbb{Z}$, if $y \in T$ then $x + y \in T$; hence $x + T \subseteq T$ and thus $x \in A(T)$.

Suppose that T is an (f, l)-good numerical set. For x = f - l and for x > f, we must have $x \in T$ since $A(T) \subseteq T$. Also, $f \notin T$ since T, A(T) share the same Frobenius number.

We now present a result specific to our $S_f(l)$ context.

Proposition 1.2 Let T be an (f, l)-good numerical set, and $x \in \mathbb{Z}$. If $x \in T$ then $x + f - l \in T$.

Proof. If $x + f - l \notin T$, then x would be a witness to f - l, and hence $f - l \notin T$. But this is impossible since T is (f, l)-good.

2 Upper Bounds

In this section we provide some structural information about (f, l)-good sets, as well as an upper bound for their number.

Recall that if T is an (f, l)-good numerical set, then $f - l \in T$. Hence $l \notin T$, or else by Proposition 1.2 we would have $l + (f - l) = f \in T$. Set

$$Y = \{1, 2, \dots, l-1\} \cup \{l+1, \dots, f-l-1\} \cup \{f-l+1, \dots, f-1\},\$$

a union of three intervals of length l-1, f-2l-1, and l-1, respectively. All (f, l)-good numerical sets consist of a subset of Y, together with all of $S_f(l)$. Hence, naively we get an upper bound for $N(S_f(l))$ of $2^{|Y|} = 2^{f-3}$. We use Proposition 1.2 to improve this.

Theorem 2.1 For fixed l, f, the number of (f, l)-good numerical sets $N(S_f(l))$ satisfies

$$N(S_f(l)) \le 3^{l-1} 2^{f-2l-1}.$$

The pump journal of undergraduate research $\mathbf{3}$ (2020), 62–67

Proof. For each $x \in \{1, 2, ..., l-1\}$, we have $x + f - l \in \{f - l + 1, ..., f - 1\}$. This yields l - 1 pairs $\{x, x + f - l\}$. By Proposition 1.2, if T is (f, l)-good and $x \in T$, then $x + f - l \in T$. Hence each pair gives three possibilities: neither element in T, both elements in T, or just $x + f - l \in T$. The fourth possibility, of just $x \in T$, is forbidden. This reduces the naive upper bound by a factor of $(3/4)^{l-1}$.

Corollary 2.2 For a fixed f, the number of f-good numerical sets $N(S_f(\star))$ satisfies

$$N(S_f(\star)) \le 2^{f-1} \left(1 - \left(\frac{\sqrt{3}}{2}\right)^{f-1} \right).$$

Proof. Set $t = \lfloor (f-1)/2 \rfloor$, and we have

$$N(S_f(\star)) = \sum_{l=1}^{t} N(S_f(l)) \le \sum_{l=1}^{t} 3^{l-1} 2^{f-2l-1} = \frac{2^{f-1}}{3} \sum_{l=1}^{t} \left(\frac{3}{4}\right)^l = \frac{2^{f-1}}{3} \frac{\frac{3}{4} - \left(\frac{3}{4}\right)^{t+1}}{1 - \frac{3}{4}}$$
$$= 2^{f-1} \left(1 - \left(\frac{3}{4}\right)^t\right) \le 2^{f-1} \left(1 - \left(\frac{3}{4}\right)^{\frac{f-1}{2}}\right)$$

Corollary 2.2 bounds $N(S_f(\star))$ away from its maximum value of 2^{f-1} , proving that not all numerical sets are good¹. Unfortunately, it is not sufficient to bound the asymptotic limit $\lim_{f\to\infty} \frac{N(S_f(\star))}{2^{f-1}}$ away from 1, much less away from 0.52.

3 Lower Bounds

We now turn to a lower bound for $N(S_f(l))$, which we provide in the following.

Theorem 3.1 For fixed l, f, the number of (f, l)-good numerical sets $N(S_f(l))$ satisfies

$$N(S_f(l)) \ge 2^{\lceil \frac{l-1}{2} \rceil + \lceil \frac{f-2l-1}{2} \rceil}.$$

Proof. We will define $\lceil \frac{l-1}{2} \rceil + \lceil \frac{f-2l-1}{2} \rceil$ subsets of Y, each of which may independently be included, or not, in an (f, l)-good numerical set.

First, for $x \in \{1, 2, \dots, \lceil \frac{l-1}{2} \rceil\}$, we consider the set

$$Q_x = \{x, f - x, x + f - l, l - x\}.$$

Note that since $1 \le x \le \frac{l}{2}$, $f - \frac{l}{2} \le f - x \le f - 1$ and $f - l + 1 \le x + f - l \le f - \frac{l}{2}$ and $\frac{l}{2} \le l - x \le l - 1$. Consequently, $x \le l - x < x + f - l \le f - x$. In particular, $Q_x \ne Q_y$ for $x \ne y$, and $|Q_x| = 4$ (unless $x = \frac{l}{2}$, in which case $|Q_x| = 2$). Also, note that

$$\bigcup Q_x = \{1, 2, \dots, l-1\} \cup \{f - l + 1, \dots, f - 1\},\$$

¹Not a major observation, in light of the bound in [5].

The pump journal of undergraduate research 3 (2020), 62–67

leaving the subset $\{l + 1, \ldots, f - l - 1\}$ of Y undisturbed. Note that for each $y \in Q_x$, also $f - y \in Q_x$, and these are witnesses for each other as their sum is $f \notin T$. Hence, if $Q_x \subseteq T$, then $Q_x \cap A(T) = \emptyset$.

Now, for $x \in \{l+1, \ldots, \lceil \frac{f-1}{2} \rceil\}$, we consider the set $R_x = \{x, f-x\}$. Note that since $l+1 \leq x \leq \frac{f}{2}, \frac{f}{2} \leq f-x \leq f-l-1$. Consequently, $R_x \neq R_y$ for $x \neq y$, and $|R_x| = 2$ (unless $x = \frac{f}{2}$, in which case $|R_x| = 1$). Note that

$$\bigcup R_x = \{l+1, l+2, \dots, f-l-1\},\$$

so $R_x \cap Q_y = \emptyset$ for all x, y. For each $y \in R_x$, also $f - y \in R_x$. These are witnesses for each other, and so if $R_x \subseteq T$, then $R_x \cap A(T) = \emptyset$.

Let T contain $S_f(l)$, together with an arbitrary collection of the subsets Q_x , R_x . In particular, $l, f \notin T$ and $f - l \in T$. By the above, $Y \cap A(T) = \emptyset$. It is easy to see that $0 \in A(T), f \notin A(T)$, and $x \in A(T)$ for all x > f.

The only remaining concern is to prove that $f - l \in A(T)$. Suppose instead that $f - l \notin A(T)$. Then there would be some witness $y \in T$ with $y + f - l \notin T$. Note that if $y \ge l + 1$, then $y + f - l \ge f + 1$, and so $y + f - 1 \in T$ and y cannot be a witness. In particular, it could not be among the R_x sets. If there is some x with $y \in Q_x$, then either y = x or y = l - x (else $y \ge l + 1$ again). But for both of these choices, $y + f - l \in Q_x$ again, so y is again not a witness. Hence $f - l \in A(T)$.

Corollary 3.2 For a fixed f, the number of f-good numerical sets $N(S_f(\star))$ satisfies

$$N(S_f(\star)) \ge \frac{2^{\frac{f-3}{2}}}{\sqrt{2}-1} \left(1 - 2^{-\frac{f-2}{4}}\right).$$

Proof. We begin with $\left\lceil \frac{l-1}{2} \right\rceil + \left\lceil \frac{f-2l-1}{2} \right\rceil \ge \frac{f-l-2}{2}$. Set $t = \lfloor (f-1)/2 \rfloor$, and we have

$$N(S_f(\star)) = \sum_{l=1}^{t} N(S_f(l)) \ge 2^{(f-2)/2} \sum_{l=1}^{t} 2^{-l/2}$$

The sum is a geometric series, and thus

$$N(S_f(\star)) \ge 2^{(f-2)/2} \frac{2^{-\frac{1}{2}} - 2^{-\frac{t-1}{2}}}{1 - 2^{-\frac{1}{2}}} = \frac{2^{\frac{f-3}{2}}}{\sqrt{2} - 1} \left(1 - 2^{-\frac{t}{2}}\right) \ge \frac{2^{\frac{f-3}{2}}}{\sqrt{2} - 1} \left(1 - 2^{-\frac{f-2}{4}}\right)$$

Although Corollary 3.2 provides a nontrivial lower bound for $N(S_f(\star))$, it is not sufficient to bound the asymptotic limit $\lim_{f\to\infty} \frac{N(S_f(\star))}{2^{f-1}}$ away from 0. We conjecture that this holds, and, more strongly, that for a fixed l, $\lim_{f\to\infty} \frac{N(l,f)}{2^{f-1}} \in (0,1)$.

We lastly observe that preprint [7] has very recently been made public, extending the above work, addressing our conjectures, and bounding the asymptotic limit $\lim_{f\to\infty} \frac{N(S_f(\star))}{2^{f-1}}$ away from 0.

The pump journal of undergraduate research $\mathbf{3}$ (2020), 62–67

Acknowledgments

The authors would like to thank the anonymous referee, whose efforts significantly improved this work.

References

- A. Assi and P.A. García-Sánchez, Numerical semigroups and applications, RSME Springer Series, vol. 1 Springer, 2016.
- [2] S.T. Chapman, C. O'Neill, Factoring in the Chicken McNugget monoid, Math. Mag., 91 (2018), 323–336.
- [3] H. Constantin, B. Houston-Edwards, N. Kaplan, Numerical sets, core partitions, and integer points in polytopes, in *Combinatorial and additive number theory*. II, Springer Proc. Math. Stat. vol. 220, 99–127, Springer, 2017.
- [4] N. Kaplan, Counting numerical semigroups, Amer. Math. Monthly, **124** (2017), 862–875.
- [5] J. Marzuola, A. Miller, Counting numerical sets with no small atoms, J. Combin. Theory Ser. A, 117 (2010), 650–667.
- [6] J.C. Rosales, P.A. García-Sánchez, Numerical semigroups, Developments in Mathematics vol 20, Springer, 2009.
- [7] D. Singhal, Y. Lin, Associated semigroups of numerical sets with fixed Frobenius number, arXiv:1912.09355v1 [math.CO], 2019. Available online at the URL: https://arxiv.org/abs/1912. 09355

Joshua Arroyo Department of Mathematics Rose-Hulman Institute of Technology 5500 Wabash Avenue Terre Haute, IN 47803 E-mail: arroyoje@rose-hulman.edu

Jackson Autry Department of Mathematics Texas A&M University Mailstop 3368 College Station, TX 778343-3368 E-mail: j.connor.autry@gmail.com

Charlotte Crandall Department of Mathematics and Statistics Smith College Burton Hall 115 Northampton, MA 01063 E-mail: ccrandall@smith.edu Jess Lefter Department of Mathematics and Statistics Slippery Rock University 1 Morrow Way Slippery Rock, PA 16057 E-mail: jess1lefler@gmail.com

Vadim Ponomarenko Department of Mathematics and Statistics San Diego State University 5500 Campanile Dr. San Diego, CA 92182-7720 E-mail: vponomarenko@sdsu.edu

Received: January 13, 2020 Accepted: April 17, 2020 Communicated by Darren A. Narayan