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Abstract - This work is inspired by the open problem The Chromatic Number of The
Plane. We approximate the plane by only considering points (p/n, q/n) ∈ R2 where p, q
are any integers and a fixed positive integer n. To prevent triviality, we add the restriction
that two points are adjacent if and only if their distance is between 1 − ε and 1 + ε for a
non-negative ε. Our goal is to find the smallest ε for each n that will force us to use at least

five colors. For n = 2, we show that the minimal ε is 1−
√
2
2 and prove this is also an upper

bound for ε for all even n ≥ 4. For n = 3, we prove a lower bound of
√
10
3 − 1 and an upper

bound of 1−
√
5
3 . For odd n ≥ 11, we prove that 1−

√
2
2 −

√
2

2n is an upper bound.
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1 Introduction

The Chromatic Number of The Plane, a problem in which the plane is made into a graph
by treating points as vertices. Vertices are adjacent (i.e. they are connected by an edge)
if and only if they are distance one apart. Each vertex in the plane is then assigned a
color. The goal is then to find the minimal number of colors so that no two adjacent
vertices have the same color. The chromatic number of the plane is not known, however
past research has shown it is bounded between 5 and 7 [2], [3], [1].

Instead of working directly on the entire xy-plane, we are using a discrete approxi-
mation that consists only of the points (p/n, q/n) where p, q are any integers and n is
a fixed positive integer. We call this set of points “the lattice”. We also fix ε to be a
non-negative number. We color every point in the lattice, with the requirement that two
points must have different colors if their distance is between 1 − ε and 1 + ε inclusively.
If we take a lattice and create edges joining any two points whose distance falls between
1− ε and 1 + ε, we can partition those edges (see Figure 1). An edge class is defined by
a distance d: if two points P and Q are distance d apart then they are in the edge class
of distance d. For each n we are trying to find the smallest epsilon, εmin(n), that requires
at least five colors for a proper coloring. If no such ε exists, then we will define εmin(n) as
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the infimum among the set of all ε that require at least five colors for a proper coloring.
Note that such an infimum always exists.

Obviously we need to test many ε to find εmin(n). A good place to start is the classic
checkerboard pattern, as this pattern always works when ε = 0. Next we increase the
value of ε until the checkerboard pattern no longer works. The value of ε where this
pattern is no longer a proper coloring is a lower bound for εmin. Alternatively, we could
start with a very large value for ε. When ε is large there are lots of edges and edge classes,
this makes it easy to find a K5 or some subgraph that requires at least five colors to be
properly colored. We then decrease the value of ε, which would decrease the number or
edge classes and make it harder to find such a subgraph.

y

x
11− ε 1 + ε

Figure 1: An annulus centered at (0, 0) in n = 2 lattice when ε = 1−
√
2
2

that highlights
in different colors the edge classes incident to the point (0, 0). Note that the thick blue

edges connect to points that are members of the edge class of distance
√
5
2

.

2 The Even n Cases

2.1 The n = 2 Case

We start with n = 2, as n = 1 is trivial.

Lower Bound

Theorem 2.1 εmin(2) ≥ 1−
√
2
2
.

Proof. When ε = 0 the lattice can be colored using 2 colors in a checkerboard pattern.
We increase the value of ε until a new edge class is formed. When ε =

√
5
2
− 1 the edge

class of distance
√
5
2

is formed. For ε =
√
5
2
− 1, there exists a repeating pattern of points

such that four colors can be used to color the whole plane. Let (0, 0), (1
2
, 0), (0, 1

2
) and

(1
2
, 1
2
) have color 1; let (1, 0), (0, 3

2
), (1, 1

2
), and (3

2
, 1
2
) have color 2; let (0, 1), (1

2
, 1), (0, 3

2
),

and (1
2
, 3
2
) have color 3; and finally let (1, 1), (3

2
, 1), (1, 3

2
), and (3

2
, 3
2
) have color 4. These
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sixteen points form a square that is repeated in a grid pattern infinitely, and colors the
whole plane. Thus when ε =

√
5
2
−1, the lattice can be filled with 4 colors in a checkerboard

fashion as in Figure 2.
We then increase the value of ε until a new edge class is formed. The new edge class

is formed when ε = 1 −
√
2
2

which creates the edge class of distance
√
2
2

. When ε is at

least 1 −
√
2
2

, two points that are directly diagonal, or points
√
2
2

units away from each
other must have different colors so our checkerboard pattern no longer works. Therefore,
εmin(2) ≥ 1−

√
2
2

.
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Figure 2: A four-coloring of the n = 2 lattice when ε is smaller than 1−
√
2
2

.

�

Upper Bound

Theorem 2.2 Let n be a positive even integer. Then εmin(n) ≤ 1−
√
2
2
.

Proof. Let ε = 1 −
√
2
2

. Let A be the point (0, 1
2
), B be (1

2
, 1), C be (1, 1

2
), and D be

(1
2
, 0). The distance between any pair of these points is between 1−ε and 1+ε inclusively.

So these points make a K4 and must all have different colors. Without loss of generality
we can assign point A color 1, point B color 2, point C color 3, and point D color 4. Then,
let E be (0, 0). The point E can have either color 1 or color 4 since it is not adjacent to
A and D (which have colors 1 and 4). This gives us 2 cases: when E is color 1 and when
E is color 4. This subgraph is shown in Figure 3.

First, let’s assume that E has color 1. Then, let F be (0, 1). Point F must have color
2 because it must have a different color from E, C, and D. Then, let G be (1, 1). Point G
has color 3 since it must have a different color than F , A, and D. Let H be (1, 0). Then
H has color 4 since it needs to be assigned a color different from A, B, G. Then finally
let I be at (1

2
, 1
2
). I must have a fifth color since it must be colored differently from E,

H, G, and F . This subgraph is shown in Figure 4. A similar argument works when E
has color 4.
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Figure 3: A subgraph that gives us 2 cases for finding the upper bound of εmin(2).
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Figure 4: Case 1: E has color 1.

With these two cases, we know εmin(n) ≤ 1−
√
2
2

. �

Corollary 2.3 εmin(2) = 1−
√
2
2
.

With these two theorems we have shown that εmin(2) ≤ 1−
√
2
2

and εmin(2) ≥ 1−
√
2
2

.

3 The n = 3 Case

Lower Bound

To find a lower bound for εmin(3), we need to find a coloring of the plane that uses only
four colors. This coloring will have an associated ε that will become our lower bound.

Theorem 3.1 εmin(3) >
√
10
3
− 1.
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Proof. We start with C1 (Figure 5), a coloring of the n = 3 lattice that uses only
two colors, where all points distance 1 apart have different colors, and C2 (Figure 6), a

coloring of the n = 3 lattice which also uses only two colors, where all points distance
√
10
3

apart have different colors.
Let C1(P ) be the color of the point P using the coloring C1, and C2(P ) be the

color of the point P using C2. We define a new coloring C (Figure 7) that uses four
colors by combining C1 and C2 as follows: C(P ) = 1 if C1(P ) = 1 and C2(P ) = 1;
C(P ) = 2 if C1(P ) = 1 and C2(P ) = 2; C(P ) = 3 if C1(P ) = 2 and C2(P ) = 1;
C(P ) = 4 if C1(P ) = 2 and C2(P ) = 2.

It is clear that if C(P ) = C(Q), then C1(P ) = C1(Q) and C2(P ) = C2(Q), and

consequently C is a coloring where all points that are either 1 or
√
10
3

apart are colored
differently

Since there are no other distances present in this lattice such that

√
10

3
≥ d(P,Q) ≥ 1 ≥ 2−

√
10

3
,

we let ε =
√
10
3
− 1. So, when ε =

√
10
3
− 1, five colors are not needed to color the plane

and εmin(3) >
√
10
3
− 1. �
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Figure 5: The coloring C1 where all points distance 1 apart have different colors.
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Figure 6: The coloring C2 where all points distance
√
10
3

apart have different colors.
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Figure 7: The coloring C.

Upper Bound

Theorem 3.2 εmin(3) ≤ 1−
√
5
3
.

Proof. Let ε = 1−
√
5
3

. Then in this case two points P and Q must have different colors

when
√
5
3
≤ d(P,Q) ≤ 2−

√
5
3

.
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Let A be the point (0, 0), let B be the point (0, 1), and let C be the point (1, 2
3
), see

Figure 8. The only distances present between these three points are 1,
√
10
3

, and
√
13
3

. So,
A, B, and C must be different colors and without loss of generality we can assign A color
1, B color 2, and C color 3. Then, let point D be (1

3
, 1
3
). Then D must have either color

1 or 4. This gives us 2 cases.

x

y

1

1

A

B

C

D

Figure 8: The formation of points that gives us 2 cases for the upper bound when n = 3.

Suppose D has color 1. Then let E be point (2
3
, 4
3
), point E must have color 4 since

it must be a different color than points B, D, and C. Also, let F be at point (2
3
, 1
3
). F

must have color 3 since it must be a different color than A, B, and E. Let point (4
3
, 2
3
) be

called G. Then G has color 2 since it must be colored differently than F , E, and D. Let
point (1

3
, 4
3
) be called H. H must have color 4 since it must have a different color than C,

D, and G. After we determine all these points, a final point I at (1, 1) must have color 5
since it cannot be the same color as B, D, F , and H. So, when D is color 1, at least five
colors are needed to color this plane.
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Figure 9: The formation of points when n = 3 and when D has color 1.
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Suppose D is color 4. Then, let J be point (2
3
,−1

3
). J must have color 2 since it has

to be a different color than A, C, and D. Also let K be at point (4
3
, 0). Then K must

have color 1 since it must be colored differently than C, D, and J . Then let point (1
3
, 0)

be called L. L must have color 4 because it has to be a different color than K, C, and B.
Let M be at (0, 2

3
). Then M must have color 1 since it has to be a different color than

points C, J , and L. After we determine all these points, a final point I at (2
3
, 4
3
) must

have color 5 since it cannot be the same color as B, C, D, and M . So, when D is color
4, at least five colors are needed to color this plane. �

x

y

1

1

A K

M

B

J

C

D

L

I

Figure 10: The formation of points when n = 3 and when D has color 4.

4 The Odd n ≥ 11 Case

Theorem 4.1

If n ≥ 11 is odd, then εmin(n) ≤ 1−
√

2

2
−
√

2

2n
.

Proof. We can take the same subgraph that is used to prove 1−
√
2
2

is an upper bound
for εmin(2); let’s call it S. The graph S ′ will be a generalized S. The S ′ can be used to

prove 1−
√
2
2

is an upper bound εmin(n) for greater values of n.
Let A ∈ V (S) be the point (0, 1

2
). In S ′ the point A′ will correspond to A. Let A′ be

the point (0, n+1
2n

). Similarly, the point F ∈ V (S) is (0, 1), the point (0, 1) is also in S ′

but we will define F ′ to be the point (0, n+1
2n

) so that the distance between (0, 0) and A′

stays the same as the distance between A′ and F ′. We generalize the rest of the points in
the same way. By doing this S ′ will consist of only three edge classes when ε = 1 −

√
2
2

just like S (see Figure 11).
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Figure 11: The generalized subgraph S ′.

Using S ′, we prove that for all odd n ≥ 11, εmin(n) ≤ 1−
√
2
2

is an upper bound. This
argument is only valid for cases when n is odd and (0, n+1

2n
) is in the n-lattice. Finally, we

can improve the upper bound by measuring the distances of S ′. By construction S ′ has

only three edge classes, they are the edge classes of distances: 1+n
n

,
√
2(1+n)
2n

, and
√
5(1+n)
2n

.
Each distance has an associated ε that is the smallest possible ε to create the edge class
of said distance. The ε are: 1

n
,

√
5
2

+
√
5

2n
− 1, and 1−

√
2
2
−

√
2

2n
. To see which ε will make

the best upper bound, we graph the values and see which is the biggest, see Figure 12.
When n ≤ 10, εmin(n) ≤

√
5
2

+
√
5

2n
− 1. For n ≥ 11, 1 −

√
2
2
−

√
2

2n
is the biggest ε. If we

round up to 11, we get that for odd n ≥ 11, εmin(n) ≤ 1−
√
2
2
−

√
2

2n
.

10.4385.828n

Figure 12: The graphs of the three ε: 1
n
,

√
5
2

+
√
5

2n
− 1, and 1−

√
2
2
−

√
2

2n
.
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