Commuting Graphs of Split Metacyclic Groups
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Abstract - We study the link between groups and graphs created by considering the
commuting graph of a group. We focus our efforts on groups that can be represented as the
semidirect product of cyclic groups, and we describe the commuting graphs of two classes
of such groups.
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This note is organized as follows. In Section 1 we recall a few definitions. In Section
2 we work with dihedral-like groups, and in Section 3 we approach groups with more
complex structure.

1 Background
Given a group G, the center of G is
Z(G) ={g € G; gx = xg, for all z € G}.

Clearly, G is abelian if and only if Z(G) = G. When G is not abelian, we define the
commuting graph of G, denoted C(G) by having vertex-set G\ Z(G) and edges connecting
vertices g, and g if and only if g19o = g29;.

In this note we obtain a simple presentation of C(G) in the case G is a semidirect
product of certain cyclic groups. In this way, we generalize results obtained in [1], [5], [6],

and [7].

A well-known object in group theory is the semidirect product of two groups (see, e.g.,
[2]). Since we will work with groups of this type, we define them next. Let H and K be
groups and let ¢ : K — Aut(H) be a homomorphism. In order to avoid confusion, we
will use the notation ¢(k) = ¢p. Let G = H x K be endowed with the operation:

(h> k) ((I, b) = (h¢k(a)v kb)

This multiplication makes G into a group, called the semidirect product of H and K,
with respect to ¢. We will denote this group by H x, K. It is known that if a group

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 1 (2018), 62-67 62



G has two subgroups, H and K, so that HK = G, H < G, and H N K = {e}, then
G = H x4 K, for some ¢.

We recall now the definition of split metacyclic groups, which are semidirect products
of cyclic groups:

Definition 1.1 /3] A group is called split metacyclic if it has the following presentation:
Gap~ry =<a,bja” = W=1, aba ! =b >,
where a, B,v € N, and f|y* — 1 (note that this implies that ged(B,v) = 1).

We remark that these groups are called metacyclic on page 462 of [4]. As remarked in
[3], the integers a, 3,7 do not identify the isomorphism type of the group. The example
given in [3] is Gg 3619 =~ G1s.12.,7, but a simpler example is G5 72 >~ G374 (see the discussion
at the beginning of Section 3).

We have that G, 5, = Zg X L, where ¢ € Aut(Zg) is defined by ¢(b) = b7 (we write
the operation of Zg as multiplication instead of addition).

2 Dihedral-like Groups
We start by considering dihedral-like groups, which are split metacyclic groups G%, =
G2, with ¢ > 1. By Definition 1.1, it follows that they can be presented as

Gy =<sr;r=s=e¢ srs ' =r">

where n,i € Ny n > 1, and 1 < i < n (i = 1 is uninteresting to us in this paper, as
Gi,, ~ 7, X Zy is abelian) satisfies i> = 1(mod n). In conclusion, we can simply say that
i has order 2 modulo n. Note that G% ~ Z, x Zs, for every i, and that G, ' ~ D,, (the

standard dihedral group of order 2n).

Lemma 2.1 Let n,i €N, 1 <i < n, and d = ged(i — 1,n). Then, Z(G},) =< r™/? >,
and thus |Z(G5,)| = d.

Proof. Assume that sr* € Z(G%,). This element would commute with every element of
the form r7. Hence, we get

87“k+j _ (STk)(Tj) _ (rj)(srk) — S(STJS)T'k _ STijT’k _ Srij+k

It follows that k + j = ij + k (mod n), and thus j = ij (mod n), for every j. This is
false, and so sr* ¢ Z(G%,), for all k.

Now we assume that 7% € Z(G% ). This element commutes with, at least, all elements
of the form 77. We only need to check when it would commute with s. We get

k k k

srh =1k 5 = s(srfs) = sr'*

and thus k = ik (mod n), which implies n | k(i — 1). It follows that 2 divides k- =1, but
this implies that 4 divides k. Hence, k has the form 5¢, for ¢ =1,2,...,d. O
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Theorem 2.2 Let n,i € N, 1 < i < n, and d = ged(i — 1,n). Then, C(GS,) is the
disjoint union of d + 1 complete graphs; one K, 4 and % copies of K.

Proof. The vertex-set of C(G3%,) contains all the elements of the form sr*, and the
elements 7%, for k # Zt,fort =1,2,...,d.

We know that elements in < r > commute with each other. Now, none of the elements
in <r >\ <7 > commutes with elements of the form sr*, as if any did then they would
commute with s, and thus would be in the center. Hence, elements in < r >\ < 7"/¢ >
commute only among themselves. This yields a complete graph on n — d vertices in
C(GY,).

Next we check when (s7%)(sr7) = (s17)(sr¥) occurs. Assuming this, we get:
PR = el = (srFs)rd = (sr%)(sr?) = (s19)(sr%) = (sris)rk = rlipk = pidtk

which implies ik + j = ij + k (mod n). We re-write this equation as i(k — j) = k — j
(mod n), and notice that this equation was already solved in the proof of Lemma 2.1. Tt
follows that k — J has the form %¢, for £ = 1,2,...,d. This yields & complete graphs on
d vertices in C(GY,,). O
Remark 2.3 Since we know that the structure of C(GY%,,) is a disjoint union of complete
graphs, it is now easy to find standard values associated to graphs, such as the mini-
mum /maximum degree, diameter, chromatic number, etc. These parameters were part of
the motivation given by authors in [1], [5], [6], and [7].

3 Groups of Order ng, for ¢ Prime and n | ¢ —1

We start by recalling a well-known construction. Consider a non-abelian group G,,, of
order pg, where p and ¢ are odd primes and p < ¢. Since G, is non-abelian, we must
have that p | ¢ — 1, Z(G,,) = {e}, and G,; = Z, x Z,. Moreover, the structure of G,
does not depend on ¢ (see [2], Section 5.5), and so we can present it as follows:

Gpg =< z,y; 27 =9y’ =, yxy_1 =% >

where 2 has order p in Z;. With the notation of Definition 1.1, we have that G,; = G} 4.
for all z # 1.

Instead of considering this group, we will next look at the non-abelian split metacyclic
group G, , ., where ¢ is an odd prime and z has order n modulo ¢ — 1. We will denote
such a group by G7,,. This is a non-abelian group, of order ng, isomorphic to Z, Xy Zy,
for some homomorphism ¢ : Z,, — Aut(Z,), and has the following presentation

Gr, =<mzy; 2 =y" =e, yry ' =27 >

where 1 < z < ¢ has order n modulo ¢. That is, ged(z,q) = 1, 2" = 1 (mod ¢), and
2" #£1 (mod gq), for all 1 < i < n. Note that this implies that n|q — 1.
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Remark 3.1 In G?

ng We get

yay =y yay Dy =y @)y = (7 ey )

and so, an induction argument yields
Yoy =
for all j € N. Note that the expression above also works for j = 0.

Next, we find the general structure of C(G7,).

Theorem 3.2 Let n,q,z € N, where q is an odd prime, n | ¢ — 1, and 1 < z < q has
order n modulo q. Then, Z(G7,) = {e} and C(G3,) consists of ¢+ 1 disjoint graphs: one
Ky 1, and q copies of K,_;.

Proof. Fix the element 2 € G}, where 0 < a < ¢. Clearly 2* commutes with all the
elements in < x >. Now we will see what other elements commute with 2. We take 1/,
where 0 < j < n, and assume z* commutes with it. We get:

2y’ = ylat
20 = ity
2 = (y'zy )"
xCL — :L‘a'zj

which implies @ = a - 2/ (mod ¢). Since ¢ is prime and 0 < a < ¢, we get that 2/ = 1
(mod ¢). However, 0 < j < n and the order of z modulo ¢ is n, a contradiction. It follows
that 2% commutes only with the elements in < x >. Hence, Z(G; )N < x >= {e}, and
thus that the degree of 2% in C(G7,) is ¢ — 2 (we do not count e and 2?). Moreover, the
vertex-set < z > \{e} induces a complete graph on ¢ — 1 vertices in C(G7,).

Similarly, the vertex-set < y > \{e} induces a complete graph on n — 1 vertices in
C(G7,)- These two complete graphs are disjoint from all other vertices in C(G7,).

Now fix the element z%° € G}, where 0 < a < gand 0 < b < n. Assume it commutes

with 2%y’ where 0 < i < ¢ and 0 < j < n. One of the products yields:

(a'y) (@) = &' (y'2"y~)yy"
_ jS(yj.ﬂjy_j)ayj+b
_ l,ixa-zjyj—l-b
_ :L,i+a~zjyj+b
Thus, assuming (ziy?)(2%y?) = (x%y?)(x'y?) implies z+a= yit0 = gati="yitb  Hence,
those two elements commute if and only if

b

it+a-2 =a+i-2" (modq)
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which can be re-written as
a(z? —1)=i(z* = 1) (mod q) (1)

We want to solve Equation (1) for ¢ and j, under the assumptions of a, b, ¢, z are given,
and that 0 < a,i < g and 0 < b, 7 < n. However, instead of doing that, we will only count
how many solutions we can find for a fixed pair a, b.

Note that none of the four factors in Equation (1) are congruent to zero modulo g,
either by assumption or because the order of z modulo ¢ is larger than both b and j.
Hence, once 0 < j < n is fixed and using that ¢ is prime, there is exactly one solution
(modulo ¢) for i, namely

a(z? —1)(z*=1)"'=i (mod q)
where (2° — 1)7! is the inverse of (2° — 1) modulo gq.

It follows that 2%¢y® commutes with exactly n — 1 elements of G,,,, one of them being
itself. Moreover, none of these elements is in the center of G,,, because each one of them
commutes with only n — 1 elements. It follows that the degree of z%y" in C(G,,) is n — 2.

Finally, we re-write ‘

a(z? —1)=i(z* = 1) (mod q)
using that ¢ is prime and that both z/ — 1 and 2® — 1 are not congruent to zero modulo
q. We get '
a(z’ = 1) =i( — 1) (mod q)
where inverses are taken modulo ¢. It follows that every two elements that commute with

2% must also commute with each other. Hence, the set of all elements commuting with
2%y induce a complete graph in C(G,,). O

Just like we had for the dihedral-like groups, now that we completely know the struc-
ture of C(G,,), it would be easy for us to find important values usually associated to
graphs, such as the minimum/maximum degree, diameter, chromatic number, etc.
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