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Abstract - Algebraic curvature tensors can be expressed in a variety of ways, and it is
helpful to develop invariants that can distinguish between them. One potential invariant is
the signature of R, which could be defined in a number of ways, similar to the signature of
an inner product. This paper shows that any algebraic curvature tensor defined on a vector
space V with dim(V ) = n can be expressed using only canonical algebraic curvature tensors
from forms with rank k or higher for any k ∈ {2, . . . , n}, and that such an expression is not
unique, eliminating some possibilities for what one might define the signature of R to be.
We also provide bounds on the minimum number of algebraic curvature tensors of rank k
needed to express any given R.
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1 Introduction

Throughout, V is a real vector space with finite dimension n. A multilinear function
R : V × V × V × V → R is an algebraic curvature tensor if ∀x, y, z, w ∈ V , R satisfies

R(x, y, z, w) = R(z, w, x, y) = −R(y, x, z, w), and

R(x, y, z, w) +R(x, z, w, y) +R(x,w, y, z) = 0.

The space of all algebraic curvature tensors on V is denoted A(V ). Given a symmetric
bilinear form ϕ, we can define the canonical algebraic curvature tensor Rϕ as

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w).

Rϕ has the property that for any positive real number c, R√cϕ = cRϕ. Since algebraic
curvature tensors are multilinear forms, R is determined by its values on some basis {ei}.
For brevity, R(ei, ej, ek, el) is denoted Rijkl.

For every symmetric bilinear form ϕ, there is some basis {ei} where ϕ is diagonal. On
this basis, the only potentially nonzero entries of Rϕ are the Rϕijji

entries. Note that for
any R, Rjiij, Rijij, etc. are defined by their relation to a given Rijji using the properties
of algebraic curvature tensors. Thus it suffices to define Rϕ by all the possible Rϕijji

.
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In [3], Gilkey showed that any algebraic curvature tensor R can be expressed in the
form

R =
m∑
i=1

εiRϕi

for εi = 1 or −1 and some symmetric bilinear forms ϕi. For a given R, define

ν(R) = min{m|R =
m∑
i=1

εiRϕi
}.

For any positive integer n, define

ν(n) = max
R∈A(V )

ν(R)

where V has dimension n.
For some positive integer k ≥ 2, we define

νk(R) = min{m|R =
m∑
i=1

εiRϕi
, where ∀i, Rank(ϕi) ≥ k}.

Then, for any positive integer n, we define

νk(n) = max
R∈A(V )

νk(R)

where V has dimension n. Note that if Rank(ϕ) = 1 or 0, Rϕ is the zero tensor[4]. Thus
any minimal expression for R 6= 0 contains only forms of rank 2 or higher, so the absolute
minimal number of canonical tensors needed, ν(R) is equal to ν2(R) for all R 6= 0, and

ν2(n) = ν(n). It was shown in [4] that ν(n) ≤ n(n+1)
2

.
Any symmetric bilinear form ϕ can be diagonalized, and Sylvester’s Law of Inertia [5]

states that the number of negative entries p, the number of positive entries q, and the
number of 0 entries s along the diagonal is unique. (p,q,s) is called the signature of ϕ.

Throughout, we denote diagonal matrices

diag(λ1, λ2, . . . , λn) =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

Throughout the paper, we will often need to show that Rϕ = RA + RB for some
nonzero symmetric bilinear forms ϕ, A, and B. We carefully demonstrate this the first
time it arises in the proof of Theorem 2.1. All similar claims are proved in the same
way, so we do not demonstrate the calculations again; rather, we describe any relevant
differences in the constructions. For any symmetric bilinear form ϕ with Rank (ϕ) ≥ 3,
there is no ψ for which Rϕ = −Rψ [1]. Noting this, the following conjecture was made.
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Conjecture 1.1 (The Signature Conjecture) For any algebraic curvature tensor R
and expression

R =

ν3(R)∑
i=1

εiRϕi

where Rank(ϕi) ≥ 3 ∀i, the number of i such that εi = −1 is unique.

If one is presented with components of two algebraic curvature tensors on different bases
that could perhaps be the same tensor, it is useful to develop quantities that can distin-
guish between these algebraic curvature tensors. These quantities are called invariants. If
the signature conjecture were true, we could define the signature of an algebraic curvature
tensor R to be the number of + and − signs used any expression of R in ν3(R) terms,
and the signature of R would be an invariant.

In Section 2, we show that ν3(R) is well defined for every R. In Section 3, we show
that the Signature Conjecture is not true as stated in Conjecture 1.1, and we provide
revised conjectures in Section 4.

2 Bounds on νk(n)

Gilkey’s proof that R =
∑m

i=1 εiRϕi
for every R requires that some ϕi can have rank

2. Thus to even consider the signature conjecture, we need to show that ν3(R) is well
defined, that is, that any R may be expressed as a linear combination of {Rϕi

} where
Rank(ϕi) ≥ 3. It is also useful to check that νk(R) is well defined, as a higher rank
requirement is one way to strengthen the conjecture, which we address later. In this
section, we show that νk(R) is well defined for any R and any k ∈ 3,. . .,n, and we provide
an upper bound on νk(R).

Theorem 2.1 νk(R) ≤ 2νk−1(R) for any R ∈ A(V ) and any k ∈ 3,. . .,n.

Proof. We prove this by induction. Choose any R ∈ A(V ). We may express R =∑
εiRϕi

where Rank(ϕi) = 2 [4]. Since ϕi is symmetric, we may choose some basis where

ϕi = diag(λ1, λ2, 0, . . . , 0).

Define

Ai = diag(
λ1√

2
,
λ2√

2
, 1, 0, . . . , 0, ) and Bi = diag(

λ1√
2
,
λ2√

2
,−1, 0, . . . , 0).

The only entries of RAi
+RBi

which could be non-zero are determined by (RAi
+RBi

)1221,
(RAi

+RBi
)1331, and (RAi

+RBi
)2332. Similarly, Rϕi

is completely determined by (RAi
+

the pump journal of undergraduate research 3 (2020), 52–61 54



RBi
)1221. Calculating each entry,

(RAi
+RBi

)1221 =
λ1√

2
· λ2√

2
+
λ1√

2
· λ2√

2
= λ1λ2 = (Rϕi

)1221

(RAi
+RBi

)1331 =
λ1√

2
− λ1√

2
= 0 = (Rϕi

)1331

(RAi
+RBi

)2332 =
λ2√

2
− λ2√

2
= 0 = (Rϕ)2332.

Thus Rϕi
= RAi

+RBi
where Rank(Ai) = Rank(Bi) = 3.

Define Ai = ψ2i and Bi = ψ2i+1. Repeating this process for each i, we find that
R =

∑
εiRψi

where Rank(ψi) = 3. Since there are at most ν2(R) = ν(R) ϕi and each Rϕi

is replaced with 2 Rψj
, ν3(R) ≤ ν2(R).

Let R =
∑
εiRϕi

where Rank(ϕi) = k − 1 for some k with 2 ≤ k − 1 < n. For each
ϕi, there is some basis where

ϕi = diag(0, . . . , 0, λ1, . . . , λk−1)

for λi ∈ R. Define

Ai = diag
(

0, . . . , 0, 1,
λ1√

2
, . . . ,

λk−1√
2

)
and

Bi = diag
(

0, . . . , 0,−1,
λ1√

2
, . . . ,

λk−1√
2

)
.

One can check that Rϕi
= RAi

+ RBi
. Let the number of diagonal entries equal to 0

in ϕi be s. If i or j ≤ s, (Rϕi
)ijji = 0, and if i and j > s, (Rϕi

)ijji = λiλj. Then if i or
j ≤ s− 1,

(RAi
+RBi

)ijji = 0 = (Rϕi
)ijji.

If i and j > s,

(RAi
+RBi

)ijji =
λiλj

2
+
λiλj

2
= λiλj = (Rϕi

)ijji.

Finally, if j > s,

(RAi
+RBi

)sjjs =
λj√

2
− λj√

2
= 0 = (Rϕi

)sjjs.

Thus Rϕi
= RAi

+RBi
.

Define Ai = ψ2i and Bi = ψ2i+1. Repeating the process for each i, we see that
R =

∑
εiRψi

where Rank(ψi) = k. By induction, for any choice of k where 2 ≤ k ≤ n,
any R can be written R =

∑
εiRψi

where Rank(ψi) = k. Then νk(R) is well defined for
all such k, and since there are at most νk−1(R) Rϕi

to be replaced in moving from a rank
k − 1 expression of R to a rank k expression, R can be expressed as a sum of at most
2νk−1(R) forms of rank k. �

Corollary 2.2 νk(n) ≤ 2νk−1(n) for any k ∈ 3,. . .,n.
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Proof. By definition, νk−1(R) ≤ νk−1(n) ∀R. The theorem shows that

νk(R) ≤ 2νk−1(R) ≤ 2νk−1(n)

for all R, so it is clear that νk(n) ≤ 2νk−1(n). �

Corollary 2.3 νk(n) ≤ 2k−3n(n+ 1) for any k ∈ 2,. . .,n.

Proof. In [4], it was shown that ν2(n) = ν(n) ≤ n(n+1)
2

. When k = 3, 2k−3 = 1. The
previous theorem shows that ν3(n) ≤ 2ν2(n) = 2ν(n) ≤ n(n+ 1). If νk(n) ≤ 2k−3n(n+ 1)
for some k, then the theorem implies νk+1(n) ≤ 2νk(n) ≤ 2k−2n(n+1). Thus the corollary
is true by induction. �

The following theorem demonstrates that in at least some cases, νk(n) < 2νk−1(n).

Theorem 2.4 ν3(3) = ν(3) = 2

Proof. In [2], it was shown that ν(3) = 2. It was also shown that when dim(V ) = 3, any
R ∈ A(V ) is exactly one of the following: R = Rϕ where Rank(ϕ) = 3, R = Rϕ where
Rank(ϕ) = 2, or R = Rϕ1 +Rϕ2 and R 6= Rϕ for any ϕ where, on some basis,

ϕ1 = diag(0, 1, λ2) and ϕ2 = diag(1, 0, λ1) for some nonzero λi.

In the first case, ν3(R) = 1. In the second case, Gilkey showed in [4] that Rϕ 6= Rψ

for any ϕ with rank 2 and ψ with rank 3, so ν3(R) 6= 1. There is some basis where
R = diag(0, a, b). Then, using Theorem 2.1, R = RA + RB for A = diag

(
1, a√

2
, b√

2

)
and

B = diag
(
− 1, a√

2
, b√

2

)
, so ν3(R) = 2.

In the third case, it is again clear that ν3(R) > 1, but one can check that Rϕ1 + Rϕ2 =
Rτ1 +Rτ2 where

τ1 = diag
( 1√

3
,−
√

3,

√
3λ

2

)
and τ2 = diag

(
1, 1,

λ

2

)
if λ = λ1 = −λ2,

τ1 = diag
( 1√

3
,
√

3,

√
3λ

2

)
and τ2 = diag

(
1,−1,

λ

2

)
if λ = λ1 = λ2,

and

τ1 = diag
(√

2,
√

2,
λ1 + λ2√

8

)
and τ2 = diag

(
−
√

2,
√

2,
λ1 − λ2√

8

)
otherwise. For any nonzero choice of λi, Rank(τi) = 3, so ν3(Rϕ1 + Rϕ2) = 2. Thus
ν3(3) = 2. �

3 Counterexamples to the Signature Conjecture

In the original statement of the signature conjecture, we require that any expression of
R uses forms of at least rank 3. To generate a counterexample, choose any real numbers
a and b with |b| > |a|. Define Rτ where

τ = diag
(

0, . . . , 0,
√
b2 − a2,

√
b2 − a2

)
.

the pump journal of undergraduate research 3 (2020), 52–61 56



This is a counterexample, since Rτ = RA +RB = RĀ −RB̄ where

A = diag

(
0, . . . , 0, 1,

√
b2 − a2

√
2

,

√
b2 − a2

√
2

)
,

B = diag

(
0, . . . , 0,−1,

√
b2 − a2

√
2

,

√
b2 − a2

√
2

)
,

Ā = diag
(
0, . . . , 0, a, b, b

)
, and B̄ = diag

(
0, . . . , 0, b, a, a

)
.

One might attempt to revise the Signature Conjecture by requiring a higher minimal
rank for each of the forms involved:

R =

νk(R)∑
i=1

εiRϕi
, where Rank(ϕi) ≥ k,

but this revision again fails, as the following theorem shows.

Theorem 3.1 For any symmetric bilinear form τ with rank k − 1 ≤ n − 1, Rτ = RA +
RB = RĀ −RB̄ for some symmetric bilinear forms A, B, Ā, and B̄ with rank k.

Proof. Take any symmetric bilinear form τ of signature (p, q, s+ 1) where p+ q = k−1.
We can find a basis where

τ = diag(0, . . . , 0︸ ︷︷ ︸
s+1

,−1, . . . ,−1︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

).

Then one can check that Rτ = RA +RB for

A = diag
(

0, . . . , 0︸ ︷︷ ︸
s

, 1,
−1√

2
, . . . ,

−1√
2︸ ︷︷ ︸

p

,
1√
2
, . . . ,

1√
2︸ ︷︷ ︸

q

)
,

B = diag
(

0, . . . , 0︸ ︷︷ ︸
s

,−1,
−1√

2
, . . . ,

−1√
2︸ ︷︷ ︸

p

,
1√
2
, . . . ,

1√
2︸ ︷︷ ︸

q

)

and R = RĀ −RB̄ for

Ā = diag(0, . . . , 0︸ ︷︷ ︸
s

, a,−b, . . . ,−b︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
q

), and

B̄ = diag(0, . . . , 0︸ ︷︷ ︸
s

, b,−a, . . . ,−a︸ ︷︷ ︸
p

, a, . . . , a︸ ︷︷ ︸
q

)
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where b = 1
a

and 1
a2
− a2 = 1. In other words, a = ±

√√
5−1
2

= ± 1√
ϕ

where ϕ is the golden

ratio. Put differently, if

T1 = diag(0, . . . , 0︸ ︷︷ ︸
s

,
1

ϕ
,−1, . . . ,−1︸ ︷︷ ︸

p

, 1, . . . , 1︸ ︷︷ ︸
q

), and

T2 = diag(0, . . . , 0︸ ︷︷ ︸
s

, ϕ,−1, . . . ,−1︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

),

RĀ = R√ϕT1 and RB̄ = R 1√
ϕ
T2

, so R = ϕRT1 − 1
ϕ
RT2 .

�
Counterexamples of this type can be avoided in a possible revision to the Signature

Conjecture by requiring that ν(R) = νk(R) for a chosen minimal rank k.

Definition 3.2 An algebraic curvature tensor R is absolutely minimal in rank k if
νk(R) = ν(R).

The above counterexamples demonstrate that absolute minimality is necessary for a rea-
sonable restatement of the Signature Conjecture. The following result demonstrates that
it is not sufficient when k = 3.

Theorem 3.3 Let dim(V ) = 3. There exists an algebraic curvature tensor R such that
ν(R) = 2 and R = Rτ1 + Rτ2 = Rψ1 − Rψ2 for some symmetric bilinear forms τ1, τ2, ψ1,
and ψ2, all with rank 3.

Proof. Let R = Rϕ1 +Rϕ2 where

ϕ1 = diag(0, 1, λ1) and ϕ2 = diag(1, 0, λ2) with λi 6= 0

for some nonzero λ1 and λ2. By [2], ν(R) = 2. Rψ1 −Rψ2 for

ψ1 = diag(λ1, λ2, 2) and ψ2 = diag(λ1, λ2, 1)

and R = Rτ1 + Rτ2 where τ1 and τ2 are defined as in the proof of Theorem 2.4. Since λ1

and λ2 were chosen to be nonzero,

Rank(τ1) = Rank(τ2) = Rank(ψ1) = Rank(ψ2) = 3.

�

Corollary 3.4 For any positive integer n, there exists an algebraic curvature tensor R ∈
A(V ) where dim(V ) = n such that ν(R) = 2 and R = Rτ1 + Rτ2 = Rψ1 − Rψ2 for some
symmetric bilinear forms τ1, τ2, ψ1, and ψ2 with rank at least 3.

Proof. Let R = Rϕ1 +Rϕ2 where

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−2

, 1, λ1) and ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 0, λ2) with λi 6= 0
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for some nonzero λ1 and λ2. The proof that ν(R) = 2 given in [2] still holds when we
extend R to dimension n by adding more 0 entries on the diagonal, so ν(R) = 2. Following
the proof of Theorem 2.4, R = Rψ1 −Rψ2 where

ψ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, λ1, λ2, 2) and ψ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, λ1, λ2, 1),

and R = Rτ1 +Rτ2 where if λ = λ1 = −λ2 6= 0, then

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
1√
3
,−
√

3,
3λ

2
√

3

)
and τ2 = diag

(
0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 1,
λ

2

)
,

if λ = λ1 = λ2 6= 0, then

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
1√
3
,
√

3,
3λ

2
√

3

)
and τ2 = diag

(
0, . . . , 0︸ ︷︷ ︸
n−3

, 1,−1,
λ

2

)
,

and if |λ1| 6= |λ2|, then

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
√

2,
√

2,
λ1 + λ2√

8

)
and τ2 = diag

(
0, . . . , 0︸ ︷︷ ︸
n−3

,−
√

2,
√

2,
λ1 − λ2√

8

)
.

�

4 Revisions to the Signature Conjecture

Since all the absolutely minimal counterexamples have k = 3, it may be sufficient to
require k ≥ 4. A revised signature conjecture would then be:

Conjecture 4.1 Given an expression R =
∑ν(R)

i=1 αiRϕi
where αi = ±1 and Rank(ϕi) ≥

4, the number of i for which αi = −1 is unique.

The simplest form of a counterexample to this revised signature conjecture would be
any R such that ν(R) = 2 and R = Rτ1 + Rτ2 = Rψ1 − Rψ2 for some τi and ψi with rank
at least k for some k ≥ 4. We are not aware of any examples fitting these criteria.

In every counterexample we have demonstrated for k > 3, the signatures of the sym-
metric bilinear forms involved in an expression of R differ when the signs involved differ.
We cannot simply require that the multiset of signatures of the ϕi is equal to the multiset
of signatures of the ψj in any two absolutely minimal expressions R =

∑ν(R)
i=1 αiRϕi

=∑ν(R)
j=1 εjRψj

where Rank(ϕi) = Rank(ψj) = n in dimension 4 or higher; we must account
for the fact that Rϕ = R−ϕ and the signatures of ϕ and −ϕ can differ: if the signature of
ϕ is (p, q, s), the signature of −ϕ is (q, p, s). This leads to the definition of an adjusted
signature of ϕ and another possible revision of the signature conjecture.

Definition 4.2 The adjusted signature of a bilinear form ϕ is the signature (p, q, s) of ϕ
if q ≥ p and the signature (q, p, s) of −ϕ if p > q.
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Conjecture 4.3 In any two absolutely minimal expressions in dimension n ≥ 4, R =∑ν(R)
i=1 αiRϕi

=
∑ν(R)

j=1 εjRψj
where Rank(ϕi) = Rank(ψj) = n and the multiset of adjusted

signatures of the ϕi is equal to the multiset of adjusted signatures of the ψj, the number
of i for which αi = −1 is equal to the number of j for which εj = −1.

We consider only k ≥ 4 because the case R = Rϕ1+Rϕ2 where ϕ1 = diag(0, . . . , 0, 1, λ),
ϕ2 = diag(0, . . . , 0, 1, 0, λ), and λ < 0 is a counterexample if k = 3. This can be seen by
checking the signatures of the rank 3 τi and ψi defined in the previous section such that
R = Rτ1 +Rτ2 = Rψ1 −Rψ2 , as in Corollary 4.2.1.

5 Future Work

1. What is the nature of all counterexamples to the signature conjecture as originally
stated? Does there exist an R in dimension 4 or higher for which ν(R) = 2, R =
Rτ1 +Rτ2 for some τi with rank n, and R = Rψ1 −Rψ2 for some ψi with rank n?

2. In the dimension 3 case, it was shown that ν3(3) = ν(3) = 2, so ν3(3) < 2ν2(3) = 4.
Can the bounds on νk(n) be improved upon in other cases?

3. When does Rϕ = Rτ1 + Rτ2 = Rψ1 − Rψ2 where Rank(ϕ) = k and Rank(τi) =
Rank(ψi) = k − 1? Some cases to this are already known [6], but a more complete
classification could be useful in proving one of the revised signature conjectures.

4. Given R, what is

ν̄k(R) = min
N

{
R =

N∑
i=1

αiRϕi
|Rank(ϕi) = k

}
?

Is there a revision of the Signature Conjecture that involved ϕi of exactly rank k
for some given k?

5. Which revision from Section 4, if any, of the signature conjecture holds?
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