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Abstract - This research investigates the restrictions on the symmetric bilinear form ϕ
with algebraic curvature tensor R = Rϕ in Einstein and weakly Einstein model spaces. We
show that if a model space is Einstein and has a positive definite inner product, then: if the
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a model space is weakly Einstein if and only if Rϕ2 has constant sectional curvature.
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1 Introduction

An algebraic curvature tensor R over a finite-dimensional real vector space V is a
multilinear function R : V ×4 → R satisfying:

R(x, y, z, w) = −R(y, x, z, w) = R(z, w, x, y) and

R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0,

the latter termed the Bianchi Identity. Algebraic curvature tensors may be obtained by
restricting the Riemannian curvature tensor to a tangent space of a Riemannian manifold.
An understandng of algebraic curvature tensors would therefore grant us a subsequent
understanding of the ambient manifold.

The following are several preliminary definitions to aid in the understanding of the
study of algebraic curvature tensors.

Definition 1.1 Given vector space V , a symmetric bilinear form ϕ: V × V → R is:

1. Symmetric: ϕ(x, y) = ϕ(y, x) for all x, y ∈ V , and

2. Linear in the first slot: ϕ(ax1 + x2, y) = aϕ(x1, y) + ϕ(x2, y) for all x1, x2, y ∈ V .
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A metric 〈·, ·〉 with respect to basis {e1, e2, . . . , en} is a symmetric bilinear form that
will be notated: 〈ei, ej〉 = gij. For an orthonormal basis, gij = ±δij. In this paper, we will
consider only positive definite metrics, so gij = δij.

We will use a similar notational convention for algebraic curvature tensors: given any
basis {e1, e2, . . . , en}, we write Rijkl = R(ei, ej, ek, el).

Definition 1.2 Given vector space V of dimension n, a metric 〈·, ·〉, and an algebraic
curvature tensor R, a model spaceM is the triple:

M = (V, 〈·, ·〉, R).

Henceforth, we will useM interchangably with V due to our particular interest in the
space V with an inner product structure and an associated algebraic curvature tensor.

Definition 1.3 A canonical algebraic curvature tensor Rϕ is an algebraic curva-
ture tensor that can be expressed as

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w),

where ϕ is a symmetric bilinear form.

We will only consider canonical algebraic curvature tensors in this paper. That is, every
R = Rϕ for some symmetric bilinear form ϕ.

Given a manifold M with smooth metric g and point P ∈ M, let (VP , 〈·, ·〉) be the
tangent inner product space at P . Then, it is possible to constructMP = (VP , 〈·, ·〉, R), a
model space tangent to M at P . In this paper, we will explore model spaces that satisfy
the Eisntein and weakly Einstein conditions.

Definition 1.4 [5] The Ricci tensor ρ over a vector space V of dimension n and or-
thonormal basis {e1, ...en} is defined by:

ρ(x, y) =
n∑
i=1

R(x, ei, ei, y).

Definition 1.5 [5]The scalar curvature τ of model space M is defined by:

τ =
n∑
i=1

ρ(ei, ei)

on an orthonormal basis {e1, . . . , en} for V .

Note that both the Ricci tensor and scalar curvature are independent of choice of
orthonormal basis.
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Definition 1.6 [5] A model space M is Einstein if the Ricci tensor is a scalar multiple
of the metric. That is for some λ ∈ R,

ρ(·, ·) = λ〈·, ·〉.

We will call λ the Einstein constant. Furthermore, it must be that λ = τ
n

, where
n = dim(V ).

Definition 1.7 [1] A model spaceM is weakly Einstein if, given an orthonormal basis
{e1, . . . , en} of V :

n∑
a,b,c=1

RabciRabcj = µδij, i, j = 1, . . . , n,

where µ = 1
n

∑n
w,x,y,z=1R

2
wxyz. We will call µ the weakly Einstein constant.

Given that a model space is Einstein or Weakly Einstein with R = Rϕ, we are able
to solve for the symmetric bilinear form ϕ that generates all possible canonical algebraic
curvature tensors. In Section 2, we define a matrix Φ associated to the symmetric bilinear
form ϕ. In Section 3, we consider Einstein model spaces, in which ϕ depends on the
dimension of the space. In particular, certain Einstein model spaces have a property called
constant sectional curvature, introduced in Definition 3.3. These results are summarized
by the Main Theorems for Einstein Model Spaces:

Main Theorem for Einstein Model Spaces 1 τ ≥ 0. Given R = Rϕ, if M is Ein-
stein with scalar curvature τ ≥ 0 and dim(M) = n, M has constant sectional curvature

τ
n(n−1) .

Main Theorem for Einstein Model Spaces 2 τ < 0. Let M be an Einstein model
space of dimension n with R = Rϕ and scalar curvature τ < 0, and suppose the eigen-
values of the matrix assocated to ϕ are λ1, . . . , λn. Then, there are at most two distinct
eigenvalues, x and y, with opposite signs. Let j be the multiplicity of x and k the multi-
plicity of y. Supposing without loss of generality that x > 0 and y < 0, we find

x =

√
n|τ |(k − 1)

j − 1
and y = −

√
n|τ |(j − 1)

k − 1
.

In Section 4, we explore weakly Einstein model spaces, in which ϕ is determined by
signs of the eigenvalues of Φ. This relationship is presented in the Main Theorem for
Weakly Einstein Model Spaces:

Main Theorem for Weakly Einstein Model Spaces 1 Let ϕ2 be the symmetric bi-
linear form with associated linear operator Φ2. Let M be a model space with R = Rϕ .
Let M̃ be a model space with R = Rϕ2 and the same metric as M. Then, M is weakly

Einstein if and only if M̃ has constant sectional curvature.

These theorems have an important corollary:
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Main Corollary 1 In model spaces, the Einstein condition does not imply the weakly
Einstein condition for dim(M) ≥ 5.

2 Diagonalization and Eigenvalues of Φ

To facilitate the discussion of canonical algebraic curvature tensors, we define a matrix Φ
for each symmetric bilinear form ϕ. Let ϕ be a symmetric bilinear form. Given a model
space M and an orthonormal basis {e1, e2, . . . , en} of M, it is possible to express ϕ as
the matrix:

ϕ =


ϕ(e1, e1) ϕ(e1, e2) . . . ϕ(e1, en)
ϕ(e2, e1) ϕ(e2, e2) . . . ϕ(e2, en)

...
...

. . .
...

ϕ(en, e1) ϕ(en, e2) . . . ϕ(en, en)

 .

There also exists a unique associated operator Φ : V → V defined by:

ϕ(x, y) = 〈Φx, y〉.

Furthermore, Φ is self-adjoint due to the symmetry of ϕ. If Φ∗ is the adjoint of Φ with
respect to inner product 〈·, ·〉, then:

〈Φx, y〉 = ϕ(x, y) = ϕ(y, x) = 〈Φy, x〉 = 〈y,Φ∗x〉 = 〈Φ∗x, y〉.

Thus, Φ = Φ∗, so Φ is self-adjoint.
In the case that the metric is positive definite, the associated matrix Φ of ϕ on any

basis can be diagonalized on an orthonormal basis [3] {e1, . . . , en}, so that Φ(ei) = λiei,
where {λi}1≤i≤n are the eigenvalues of Φ. Thus, this matrix is:

Φ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

Furthermore, we notice that since ϕ(ei, ej) = 〈Φei, ej〉 = 〈λiei, ej〉 = λigij = λiδij, the
representation of ϕ as a matrix (above) is equivalent to Φ. So, the matrix representation
of ϕ when Φ is diagonal is:

ϕ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

Thus, if it is given that R = Rϕ and that the orthonormal basis for V is such that Φ is
diagonal, the only possible nonzero entries of R are those given by Rijji = λiλj = −Rijij
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for i 6= j. This can be demonstrated by a simple manipulation of the expression for
canonical algebraic curvature tensors.

Given these simplifications, we will now explore their implications on Einstein model
spaces and solve for the eigenvalues of Φ given R = Rϕ.

3 Einstein Model Spaces

Using facts that become obvious through the simplified notation introduced in Section 2,
we may summarize the Einstein condition using the following system of equations:

Proposition 3.1 Let M be a model space of dimension at least 2 with R = Rϕ and a
positive definite metric. Let λ1, . . . , λn be the eigenvalues of Φ. Then, the following system
of equations holds if and only if M is Einstein with Einstein constant λ:

λ = λ1(λ2 + λ3 + . . .+ λn)
λ = λ2(λ1 + λ3 + . . .+ λn)
λ = λ3(λ1 + λ2 + . . .+ λn)

...
λ = λi(λ1 + λ2 + . . .+ λi−1 + λi+1 + . . .+ λn)

...
λ = λn(λ1 + λ2 + . . .+ λn−1).

(1)

Proof. Let {e1, . . . , en} an orthonormal basis for V that diagonalizes ϕ. Recall that,
by definition, M is Einstein when ρ(ei, ej) = λδij for all 1 ≤ i, j ≤ n. The discussion in
Section 2 gives us that when R = Rϕ and i 6= j,

∑n
k=1Rikkj = 0. Thus, M is Einstein

if and only if ρ(ei, ei) = λ for all 1 ≤ i ≤ n. By the discussion in Section 2, we have
that ρ(ei, ei) =

∑n
k=1Rikki =

∑
k 6=i λiλk = λ. Therefore, M is Einstein if and only if the

equations in System (1) hold. �

Remark 3.2 Proposition 3.1 has clear applications in dim(M) ≥ 2; when n = 1, λ = λ1,
the sole eigenvalue of Φ.

In the following subsections, we will apply these equations to Einstein model spaces
with the purpose of solving for Φ given various parameters for Einstein constant λ and
scalar curvature τ .

3.1 Constant sectional curvature in Einstein model spaces.

Now, we will see why Einstein model spaces with τ ≥ 0 have a special property called
constant sectional curvature.

Definition 3.3 Given model space M, the sectional curvature κ of a 2-dimensional
subspace of M = (V, 〈·, ·〉, R) spanned by independent u, v ∈ V is defined by:

κ(u, v) =
R(u, v, v, u)

〈v, v〉〈u, u〉 − 〈u, v〉2
.
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M has constant sectional curvature csc(ε) if κ is independent of the chosen subspace.

It is easy to show that the sectional curvature of a 2-dimensional subspace is inde-
pendent of the choice of spanning vectors u, v [4]. In this case, the definition simplifies
to:

κ(u, v) =
R(u, v, v, u)

R〈·,·〉(u, v, v, u)
= ε for all independent u, v ∈ V.

Now, we will ascertain several basic results which will aid us in the description of
Einstein model spaces with τ ≥ 0.

Lemma 3.4 Given a model space M, an algebraic curvature tensor Rϕ, and c ∈ R,

Rcϕ = c2Rϕ.

Proof. This result can be obtained through a straightforward application of the definition
of Rϕ:

Rcϕ(x, y, z, w) = cϕ(x,w) · cϕ(y, z)− cϕ(x, z) · cϕ(y, w)
= c2(ϕ(x,w)ϕ(cy, z)− ϕ(x, z) · ϕ(y, w))
= c2Rϕ(x, y, z, w).

�

Lemma 3.5 If ϕ = ω〈·, ·〉 for some ω ∈ R and R = Rϕ, then M has csc(ω2).

Proof. Let ϕ = ω〈·, ·〉 and let u, v span a 2-plane in V . Then,

Rϕ = Rω〈·,·〉 = ω2R〈·,·〉

by Lemma 3.4. Calculating the sectional curvature yields:

κ(u, v) =
Rϕ(u, v, v, u)

R〈·,·〉(u, v, v, u)
=
ω2R〈·,·〉(u, v, v, u)

R〈·,·〉(u, v, v, u)
= ω2.

Thus, M has csc(ω2). �
With these preliminaries, we are now able to solve for the case τ = 0.

Lemma 3.6 Let M be an Einstein model space with orthonormal basis {e1, . . . , en} for
V and ρ(·, ·) = λ〈·, ·〉. Let {λi}1≤i≤n be eigenvalues of diagonalized Φ, as in Section 2. If
R = Rϕ, then the following are equivalent:

1. λ = 0 and

2. λi 6= 0 for at most one i ∈ {1, . . . , n}.

In this case, M has csc(0).
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Proof. Suppose M is Einstein. If λi = 0, then

λ = λi

(
n∑

j=1,j 6=i

λj

)
= 0,

so (2) implies (1).
Conversely, suppose λ = 0. Let there be i nonzero eigenvalues of Φ, and, for contra-

diction, suppose without loss of generality that λ1, . . . , λi 6= 0 for i ≥ 2. By System (1),
for some a, b ∈ {1, . . . , i}, a 6= b,

λa

(
n∑

c=1,c 6=a

λc

)
= 0 and

λb

(
n∑

c=1,c 6=b

λc

)
= 0.

Dividing the first equation through by λa and the second by λb leads to,

n∑
c=1,c 6=a

λc = 0 and

n∑
c=1,c 6=b

λc = 0.

Then, subtracting the first equation from the second results in

λa − λb = 0,

and simplifying yields
λa = λb.

Since a, b ∈ {1, 2, . . . , i} were arbitrary,

λ1 = λ2 = · · · = λi = η 6= 0.

Furthermore, when this is substituted back into any of 1, 2, . . . , i of System (1), it becomes
clear that

η

(
η(i− 1) +

n∑
j=i+1

λj

)
= 0.

So since η 6= 0 and λj = 0 for j > i,

η(i− 1) +
n∑

j=i+1

λj = η(i− 1) = 0.
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Thus, either i = 1, contradicting our assumption that i ≥ 1, or or η = 0, contradicting
there being more than one nonzero eigenvalue. As such, (1) implies (2). Now that we
have shown this to be true, we will further demonstrate that this implies that M has
constant sectional curvature.

Recall that the only nonzero entries of Rϕ are those in the format Rijji or Rijij for
i 6= j. Also, Rijji = ϕ(ei, ei)ϕ(ej, ej) = ΦiiΦjj = λiλj. Since at most one λi = 0 when
λ = 0, Rijji = 0 for all i, j, and thus Rϕ = 0 identically. It follows that M has csc(0). �

Now that we found Einstein model spaces with τ = λ = 0 to have csc(0), we will
show that Einsein model spaces with λ > 0 also have constant sectional curvature. When
n = dim(V) ≤ 2, the model space trivially has constant sectional curvature. Lemma 3.7
will consider the non-trival case of n ≥ 3.

Lemma 3.7 Given R = Rϕ, if M is Einstein with λ > 0 and n ≥ 3, then Φ = cI.

Furthermore, c = ±
√

λ
n−1 , so M has csc( λ

n−1).

Proof. Let λ > 0 and suppose ϕ 6= c〈·, ·〉. Then, there exists i 6= j such that λi 6= λj.
Due to the symmetries of System (1), we may assume without loss of generality that
λ1 6= λ2. Then, subtracting the first two equations of System (1), we find that:

(λ1 − λ2)(λ3 + λ4 + · · ·+ λn) = 0.

Since λ1 6= λ2, λ3 + λ4 + · · ·+ λn = 0. It is now evident that

−λl =
n∑

k=3,k 6=l

λk ∀l ∈ {3, . . . , n}.

Therefore, substituting that into all remaining equations from System (1) yields

λ = λl(λ1 + λ2 +
n∑

k=3,k 6=l

λk) = λl(λ1 + λ2 − λl) ∀l ∈ {3, . . . , n}.

Summing both sides of equations over l = 3, . . . , n, we find that:

n∑
l=3

λ =
n∑
l=3

λl(λ1 + λ2 − λl) =
n∑
l=3

λl(λ1 + λ2)−
n∑
l=3

λ2l , so

(n− 2)λ = (λ1 + λ2)

(
n∑
l=3

λl

)
−

(
n∑
l=3

λ2l

)
= −

(
n∑
l=3

λ2l

)

since
∑n

l=3 λl = 0. As such, λ > 0 and −
(

n∑
l=3

λ2l

)
≤ 0, this equation is inconsistent.

Therefore, it must be the case that ϕ = c〈·, ·〉 and Φ = cI.
Since all the eigenvalues of Φ are equal, we can write:

λ = λi ((n− 1)λi) = (n− 1)λ2i .
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Therefore, solving for λi,

λi = ±
√

λ

n− 1
.

It follows that c = ±
√

λ
n−1 , so, by Lemma 3.5, M has csc( λ

n−1). �

Now, we are prepared to compile our results into a single theorem.

Theorem 3.8 Main Theorem for Einstein Model Spaces. Given R = Rϕ, if M is Ein-
stein with scalar curvature τ ≥ 0, M has constant sectional curvature τ

n(n−1) .

Proof. Since τ ≥ 0, λ ≥ 0. Let τ = 0. Then, by the results of Lemma 3.6, M is csc(0).
Let τ > 0. Then, by Lemma 3.7, M has constant sectional curvature. �

In this section, we completely described every Einstein model space with a canonical
algebraic curvature tensor and nonnegative scalar curvature. Furthermore, we demon-
strated that if τ ≥ 0, then the model space has constant sectional curvature.

3.2 Einstein model spaces with negative scalar curvature.

The case in which τ, λ ≥ 0 in Einstein spaces has already been solved in Section 3.1,
leaving the case in which τ, λ < 0. To solve for the eigenvalues of Φ, we will first establish
that there exist at most 2 distinct eigenvalues of Φ.

Theorem 3.9 Given an Einstein model space M, if R = Rϕ, then Φ can have at most
2 distinct eigenvalues.

Proof. If dim(V ) ≤ 2, Φ is smaller than or equal to a 2 × 2 matrix, and therefore can
have at most 2 eigenvalues.

Suppose then that dim(V ) ≥ 3, and Φ has at least 3 distinct eigenvalues. Due to the
symmetries of System (1), we can let λ1 = X, λ2 = Y , and λ3 = Z, where X, Y, and Z
are distinct nonzero constants. (The case in which any one of {X, Y, Z} is zero is covered
in Lemma 3.6.) Manipulating the first three equations in System (1) yields:

λ
X

= Y + Z + λ4 + . . .+ λn
λ
Y

= X + Z + λ4 + . . .+ λn
λ
Z

= X + Y + λ4 + . . .+ λn

Subtracting the second equation from the first and simplifying shows that

λ
X
− λ

Y
= Y −X

.

So, λ = XY . Similar operations for the second and third equations, as well as the first
and third equations, lead to the conclusion that λ = XY = Y Z = XZ. Since X, Y , and
Z are nonzero, X = Y = Z, which contradicts their being distinct. Thus, Φ can have at
most 2 distinct eigenvalues. �
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Now that we have established that any Φ must have at most two distinct eigenvalues,
we will use this information to solve for the two eigenvalues x, y in the case that τ, λ < 0.
To do this, we will assign j to be the number of times x is an eigenvalue of Φ (multiplicity
of x), and k to be the multiplicity of y. We will then use all the information we have
gathered thus far to solve for x and y. The results are given in Theorem 3.10.

Theorem 3.10 Main Theorem for Einstein Model Spaces. Let M be an Einstein model
space with R = Rϕ and scalar curvature τ < 0, and suppose the eigenvalues of Φ are
λ1, . . . , λn. Then, there are at most two distinct eigenvalues, x and y, with opposite signs.
Let j be the multiplicity of x and k the multiplicity of y. Supposing x > 0 and y < 0, we
find that

x =

√
n|τ |(k − 1)

j − 1
and y = −

√
n|τ |(j − 1)

k − 1
. (2)

Proof. By Theorem 3.9,M has at most 2 eigenvalues. Since τ < 0, we know that λ < 0.
Since λ = xy, as in Theorem 3.9, one of {x, y} must be negative and the other positive,
and we may assume that x > 0 and y < 0 without loss of generality. The following system
of equations can be compiled from the equations presented in previous sections:

λ = xy, (3)

from the proof of Theorem 3.9,
n = j + k, (4)

by definition, and
(j − 1)x+ (k − 1)y = 0 (5)

Equation 5 is derived from System (1), which states that, in this case,

λ = x(y + (j − 1)x+ (k − 1)y) = xy + x((j − 1)x+ (k − 1)y).

Thus, x((j − 1)x+ (k − 1)y) = 0, and dividing by x yields: (j − 1)x+ (k − 1)y = 0.
Note that j, k 6= 1 since that would imply that either x or y equals zero, which

contradicts their being nonzero. If j or k is zero, Φ has only one eigenvalue, which
simplifies to the Φ = cI case covered in Section 3.

Manipulating Equation 5 and combining it with Equation 3 yields:

λ

x
= y = − j − 1

k − 1
· x.

Since λ < 0, −λ = |λ|, so x2 = |λ|k−1
j−1 . Thus,

x =

√
|λ|k − 1

j − 1
, y = −

√
|λ| j − 1

k − 1
.
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Hence,
(λ1, . . . , λj, λj+1, . . . , λn) =(√

|λ|k−1
j−1 , . . . ,

√
|λ|k−1

j−1 ,−
√
|λ| j−1

k−1 , . . . ,−
√
|λ| j−1

k−1

)
.

Factoring the right hand side and substituting in n|τ | for λ leads to the conclusion that:

(λ1, . . . , λj, λj+1, . . . , λn) =
√
n|τ |

√
k − 1

j − 1

(
1, . . . , 1,− j − 1

k − 1
, . . . ,− j − 1

k − 1

)
.

�

4 Weakly Einstein Model Spaces

Similar to how we described the canonical algebraic curvature tensors of Einstein model
spaces in the previous section, we may solve for the algebraic curvature tensors of weakly
Einstein model spaces by first constructing a system of equations.

Proposition 4.1 Let M be a model space with R = Rϕ and a positive definite metric.
Let λ1, . . . , λn be the eigenvalues of Φ. Then, the following system of equations holds if
and only if M is weakly Einstein:

µ̃ = λ21(λ
2
2 + λ23 + . . .+ λ2n)

µ̃ = λ22(λ
2
1 + λ23 + . . .+ λ2n)

µ̃ = λ23(λ
2
1 + λ22 + . . .+ λ2n)

...
µ̃ = λ2i (λ

2
1 + λ22 + . . .+ λ2i−1 + λ2i+1 + λ2n)

...
µ̃ = λ2n(λ21 + λ22 + . . .+ λ2n−1)

(6)

where µ̃ = µ
2
.

Proof. Let {e1, . . . , en} an orthonormal basis for V that diagonalizes ϕ. Recall that
M is weakly Einstein if

∑n
a,b,c=1RabciRabcj = µgij. By the discussion in Section 2,

Rxyyx = −Ryxyx are the only nonzero entries of any given Rabci, so all other entries
may be discarded. Thus, i = j in all nonzero terms. Then,

n∑
a,b,c=1

RabciRabcj =
n∑
a=1

R2
iaai +

n∑
a=1

R2
aiai = 2

n∑
a=1

R2
iaai = µ.

Hence,
n∑
a=1

R2
iaai =

µ

2
= µ̃.
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Since Riiii = 0,

µ̃ =
n∑

a=1,a 6=i

λ2iλ
2
a = λ2i

n∑
a=1,a 6=i

λ2a ∀i ∈ {1, 2, . . . , n}.

The logic is reversible, so the converse holds. �
Now that we have established the relationship using a system of equations, we will

solve the case for µ = 0.

Lemma 4.2 LetM be a weakly Einstein model space with orthonormal basis {e1, . . . , en}
of V and µ defined by:

∑n
a,b,c=1RabciRabcj = µgij. Let µ̃ = µ

2
. Let {λi}1≤i≤n be eigenvalues

of Φ, as in Section 2. If R = Rϕ, then the following are equivalent:

1. µ = 0 and

2. λi 6= 0 for at most one i ∈ {1, . . . , n}.

In this case, M has csc(0).

Proof. The proof for this lemma is identical to that of Lemma 3.6, but with λ2i instead
of λi. �

4.1 Weakly Einstein model spaces with dim(M) = n and µ > 0.

In this subsection, we will determine that if a model space is weakly Einstein, accociated
linear operator Φ has one eigenvalue, up to sign. The following theorem encapsulates this
result.

Theorem 4.3 Main Theorem for Weakly Einstein Model Spaces. Let ϕ2 be the symmetric
bilinear form with associated linear operator Φ2. Let M be a model space with R = Rϕ .
Let M̃ be a model space with R = Rϕ2 and the same metric as M. Then, M is weakly

Einstein if and only if M̃ has constant sectional curvature.

Proof. SupposeM is weakly Einstein. Then, there exists µ̃ such that System (6) holds.
Let ηi = λ2i . Then, we know the following to be true:

Φ2 =


λ21 0 . . . 0
0 λ22 . . . 0
...

...
. . .

...
0 0 . . . λ2n

 =


η1 0 . . . 0
0 η2 . . . 0
...

...
. . .

...
0 0 . . . ηn


Furthermore, the following system holds:

µ̃ = λ21(λ
2
2 + λ23 + . . .+ λ2n) = η1(η2 + η3 + . . .+ ηn)

µ̃ = λ22(λ
2
1 + λ23 + . . .+ λ2n) = η2(η1 + η3 + . . .+ ηn)

µ̃ = λ23(λ
2
1 + λ22 + . . .+ λ2n) = η3(η1 + η2 + . . .+ ηn)

...
µ̃ = λ2n(λ21 + λ22 + . . .+ λ2n−1) = ηn(η1 + η2 + . . .+ ηn−1).
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This system clearly satisfies the requirements set by System (1), signifying that model
space M̃ is Einstein with R = Rϕ2 . Since µ̃ > 0, Theorem 3.7 states that M must have
constant sectional curvature.

Conversely, suppose M̃ has constant sectional curvature. In [4], Gilkey proves that
constant sectional curvature implies Φ = cI, so it must be the case that Φ2 = ηI for
some η. Here, it is known that η ≥ 0. Clearly, this fulfills the requirements for M to be
Einstein, as enumerated in System (1). Then, Φ2 can be expressed as a diagonal matrix
with eigenvalues η, while Φ can be written as:

Φ =


±√η 0 . . . 0

0 ±√η . . . 0
...

...
. . .

...
0 0 . . . ±√η

 .

Then, the equations in System (6) are fulfilled with µ̃ = (n−1)η. Therefore,M is weakly
Einstein. �

Theorem 4.3 has an important implication, summarized by the following corollary:

Corollary 4.4 Given the same conditions as in Theorem 4.3, the eigenvalues of Φ must
be the same up to sign.

In 2010, it was proven that in four dimensions, if a model space is Einstein, it is also
weakly Einstein [2]. We can now demonstrate that this is not true in model spaces of
higher dimensions. This is a second major conclusion of Theorem 4.3.

Corollary 4.5 In model spaces, the Einstein condition does not imply the weakly Einstein
condition for dim(M) ≥ 5.

Proof. Take the construction of the eigenvalues of Φ to be dictated by j = 2, as described
in Theorem 3.10.

Then, if dim(M) 6= 4, the eigenvalues are x =
√

n|τ |(k−1)
j−1 and y = −

√
n|τ |(j−1)
k−1 ; since

j 6= k, |x| 6= |y|. Thus, by 4.4, M is not weakly Einstein.
Then, it is clear that in dimensions other than 4, the eigenvalues are not negatives of

each other, as required by Theorem 4.3 for a model space to be weakly Einstein. Thus, a
model space with such an R = Rϕ is Einstein but not weakly Einstein. �

The following is a concrete example of this concept.

Example 4.6 Einstein does not always imply weakly Einstein. LetM have R =
Rϕ and define Φ to have eigenvalues

(λ1, λ2, λ3, λ4, λ5) =

√
1

2
(1, 1, 1,−2,−2).

Clearly, this satisfies being Einstein with j = 3, k = 2. However, for the model space
to be weakly Einstein, permuting the squares eigenvalues should not change the result.
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That is, λ21(λ
2
2 + λ23 + . . . + λ2n) = λ22(λ

2
1 + λ23 + . . . + λ2n). In this example, this condition

is clearly not satisfied:(√
1

2

)2
√1

2

2

+

√
1

2

2

+

(
−2

√
1

2

)2

+

(
−2

√
1

2

)2


6=

(
−2

√
1

2

)2
√1

2

2

+

√
1

2

2

+

√
1

2

2

+

(
−2

√
1

2

)2
 =

µ

2
,

which is the necessary condition for weakly Einstein. Therefore, Einstein does not imply
weakly Einstein.

It is easy to produce model spaces of dimension at least 5 that are Einstein but not
weakly Einstein using the same process as in Example 4.6 (by choosing, for example
j = 2). These examples prove Corollary 4.5.
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