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1 Background and Main Theorem

A graph G consists of a set of vertices, V , and a set of edges, E; edges connect pairs of
vertices in V . We usually denote a graph G = (V,E). In this article we assume that all
graphs have neither multi-edges nor loops. A complete k-partite graph (for k > 1) has
its vertices partitioned into k sets, and in which edges connect all pairs of vertices that
are not on the same partition; no two vertices in the same partition are adjacent to each
other. We notate a complete multipartite graph by Kn1,n2,··· ,nt with n1 ≤ n2 ≤ · · · ≤ nt,
where a given sub-index represents the number of vertices in a given partition. We will
say that a partition with exactly one vertex is a singleton. We direct the reader to [3] for
more details, and results, about graphs.

A two-player combinatorial game is a game without moves determined by chance,
where all possible moves are known to the players (the game has perfect information).
Under the assumption that each player will play the “best” possible move, various winning
strategies arise within the structure of the game (see [2] for a great study on combinatorial
games).

In this article, we are interested in studying a game, called Grim, that is played on
graphs. Grim was defined, inspired by the work of Fukuyama in [4] and [5], by Adams et.
al in [1], where they studied strategies for this game when played on certain families of
graphs. They also wrote a program to compute the Sprague-Grundy values (see [6] and
[7]) associated to Grim played on paths; this program computes these values recursively
by just implementing the definition of the Sprague-Grundy function.

We explain how to play Grim next.

Definition 1.1 A legal move of Grim on a graph H consists of deleting a vertex, v,
together with all the edges incident with v and any other vertices that may have become
isolated after deleting v.
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Given an initial position graph G, Grim is played by two players alternating in taking
turns and making one legal move per turn. In the case that G has any isolated vertices,
they will be deleted before the first legal move is made. The player making the last legal
move is the winner of the graph G.

Let G and H be graphs. If H is obtained from G after a legal Grim move, then we
will call H a follower of G. If, given a graph H, there is a strategy to win for the next
player making a move then we will say that H is an N position (the N is because the
next player will win the game); if the next player to make a move does not have a strategy
to win then H is a P position (the P is because the previous player would now win the
game).

In [1], winning strategies for Grim were found for complete tripartite graphs, and
complete multipartite graphs having exactly one singleton or no singletons, among other
things. The following two results are from that article; the have been re-phrased using
the number of vertices of the graph, |V |, to make them to read similar to results ahead
in this article.

Lemma 1.2 Let m,n ∈ N. Then, the following hold.

(a) Kn is an N position if and only if |V | is even.

(b) K1,n is an N position, for all |V |.

(c) Assume m,n > 1. Then, Km,n is an N position if and only if |V | is odd.

(d) K1,1,n is an N position if and only if |V | is even.

(e) Assume n ≥ 2. Then, K1,2,n is an N position, for all |V |.

(f) Assume m,n ≥ 3. Then, K1,m,n is an N position if and only if |V | is odd.

Lemma 1.3 Let G = Kn1,n2,··· ,nt, where ni ∈ N, for all i = 1, . . . , t. Then,

(a) Assume t ≥ 3 and ni ≥ 2, for all i = 1, . . . , t. Then, G is an N position if and only
if |V | is odd.

(b) Assume n1 = 1, t ≥ 4, and ni ≥ 3, for all i = 2, . . . , t. Then, G is an N position if
and only if |V | is odd.

The results for complete tripartite graphs in Lemma 1.2 motivates us to look further
into cases where N positions determined by |V | even switch to |V | odd. This leads us to
look into complete multipartite graphs with at least two singletons.

Notation. In order to help ourselves in the writing of our arguments, we shall write
complete multipartite graphs by K

n
t0
0 ,n

t1
1 ,n

t2
2 ,...,n

tk
k

, where n0 ≤ n1 ≤ · · · ≤ nk, and ti ∈ N
represents the number of partitions with ni vertices.
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In the following sections we address the problem of playing Grim on a class of graphs
that were not considered in Lemma 1.3. These are all the complete multipartite graphs
that have at least one partition containing exactly two vertices (note that part (b) requires
ni ≥ 3, for all i > 1). All the results in the next two sections are summarized in our Main
Theorem, which follows; we will prove our Main Theorem in Section 4.

Theorem 1.4 Assume that m,n, s, t ∈ N, s ≥ 0, t ≥ 2, and m,n ≥ 2. Then, the
following hold for graphs of the form K1t,2s,m,n.

(1) For m < t + 1, K1t,2s,m,n is an N position if and only if |V | is even.

(2) For m = t + 1, K1t,2s,m,n is an N position for all n ≥ m.

(3) For m > t + 1, K1t,2s,m,n is an N position if and only if |V | is odd.

Using our Main Theorem, along with Lemma 1.3, we are able to quickly determine the
outcome of Grim played on complete multipartite graphs of the following types: (1) having
no singletons, (2) having exactly one singleton, or (3) consisting of mostly singletons
and/or partitions containing two vertices. Note that, for example, the graph K1,1,1,3,3,3 is
not addressed in either result.

2 Complete Four-Partite Graphs

We begin with an examination of strategies for the “smallest” type of complete multipar-
tite graphs with at least two singletons. Since the strategies for bipartites and tripartites
are known, we naturally continue with complete four-partite graphs.

Lemma 2.1 Let m,n ∈ N, and G = K1,1,m,n. Then,

(a) K13,n, where n ≥ 1, is an N position if and only if |V | is even.

(b) K12,2,n, where n ≥ 2, is an N position if and only if |V | is even.

(c) K12,3,n, is an N position, for all n ≥ 3.

(d) K12,m,n, where m,n ≥ 4, is an N position if and only if |V | is odd.

Proof. (a) First consider the case K14 . From this starting position, all moves will result
in the follower K13 , a P position. Thus, K14 is an N position. Now we consider the case
where n = 2. The starting move could give the follower K14 , an N position, or K12,2,
which by Lemma 1.2 is also an N position. Thus, K13,2 is a P position.

We proceed by induction on n, where n ≥ 3; we want to show that K13,n+1 is an N
position, for n + 1 ≥ 4.

When n + 1 is odd, Player 1 will play the starting move that yields K1,1,1,n. Since n
is an even number, by our inductive hypothesis this is a P position. Hence, in this case,
K13,n+1 is an N position.
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Assume n + 1 is even. If Player 1 leaves the follower K13,n then, as n is odd, K14 is
an N position by induction. It follows that K13,n is a P position. Now, if Player 1 leaves
K12,n+1 as a follower. Since n + 1 is even, by Lemma 1.2, this is an N position. Thus,
irrespective of the starting move, K13,n+1 is a P position when n + 1 is even.

(b) First consider the case K12,22 . From this starting position, Player 1 will choose the
move that results in K13,2, which by (a) is a P position. Thus, K12,22 is an N position.

Now we consider the case K12,2,3. The follower K1,1,22 is the previous base case, the
follower K13,3 is an N position by (a), and the follower K1,2,3 is an N position by Lemma
1.2. In either case, K12,2,3 is a P position.

Now we proceed by induction on n, where n ≥ 4; we want to show that K12,2,n+1 is an
N position, for n + 1 ≥ 5, if and only if n + 1 is even.

If n + 1 is even, then Player 1 will choose the starting move that gives the follower
K13,n+1, which, by (a), is a P position. Thus, K12,2,n+1 is an N position when n + 1 is
even.

If n + 1 is odd, then the follower K12,2,n gives the previous case. The follower K13,n+1

is an N position by (a), and the follower K1,2,n+1 is an N position by Lemma 1.2. Thus
K12,2,n+1 is a P position when n + 1 is odd.

(c) First consider the base case K12,32 . Player 1 will choose the follower K12,2,3, a P
position by a previous case. Thus K12,32 is an N position.

Next consider K12,3,n, for n odd. Player 1 will choose the follower K12,2,n, a P position
by a previous case. When n is even, then Player 1 will choose the follower K1,3,n, a P
position by Lemma 1.2. Hence, K12,3,n is an N position for all n ≥ 3.

(d) First consider the base case K12,42 . The follower K12,3,4 is an N position by a
previous case, while the follower K1,42 is an N position by Lemma 1.2. Thus K12,42 is a
P position.

Next consider the case when m + n is odd. Player 1 will choose the follower K1,m,n, a
P position by Lemma 1.2. When m + n is even, the follower K1,m,n is an N position by
Lemma 1.2. Any other followers both give m + n− 1 odd, which is an N position by the
previous case. Hence, K12,m,n is a P position when m + n is even. �

Example 2.2 We consider K12,2,2, and we play by deleting the vertex in red (in the
diagram below). We see that Player 1 will win the graph by taking the last two vertices
from K2.

Hence, K12,2,2 is an N position. This is consistent with part (b) in Lemma 2.1, as
|V | = 1 + 1 + 2 + 2 = 6 is even.
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3 Complete Multipartite Graphs with Several Partitions

In the previous section we discussed all complete four-partite graphs that had not been
addressed in Lemma 1.3. Also, we can see in Lemma 2.1 that there is a pattern of
alternation that switched from N positions being determined by |V | even to |V | odd; this
behavior is similar to what we see in Lemma 1.3. In this section, we expand these results
to complete multipartite graphs consisting of large numbers of partitions.

Given that most of the results in this section are fairly technical, we provide a short
comment on its organization. We start by studying graphs of the form K1t,2,n in Lemma
3.1, we then generalize this result in Lemma 3.2, where we look at the behavior of K1t,s,n,
for n, s, t ≥ 2. Finally, in Lemma 3.4 we consider a slightly different family of graphs
graphs, those of the form at K1,2t,s,n, for s, t ≥ 1, and n ≥ 2. After these results have
been proved, we will be ready to prove our Main Theorem.

Lemma 3.1 Let n, t ∈ N, where n, t ≥ 2, then K1t,2,n is an N position if and only if |V |
is even.

Proof. We will prove this lemma in three stages: we will first consider two particular
cases that will serve as ‘base cases’ for the main proof.
Claim 1. Let G = K14,n, where n ∈ N. Then G is an N position if and only if |V | is even.
Proof of Claim 1. First consider the case where G = K15 . Then, there is only one possible
follower K14 , which is an N position by Lemma 2.1. Thus, G is a P position.

If n is even, then Player 1 will choose the follower K13,n, a P position by Lemma 2.1.
Thus, G is an N position. If n is odd, then the follower K14,n−1 is an N position by a
previous case. The other possible follower, K13,n, is also an N position by Lemma 2.1.
Thus, G is a P position.

Claim 2. Let n, t ∈ N, where n, t ≥ 2, then K1t,n is an N position if and only if |V | is
even.
Proof of Claim 2. The cases when t ∈ {2, 3} have been already studied in Lemma 1.2 and
Lemma 2.1. So, for the rest of the proof we assume that t ≥ 4 and n ≥ 2.
(⇐) We will proceed by induction on s = t + n. If s = 6 we get G = K14,2, which is an
N position by Claim 1.

We assume that K1a,b is an N position for some even s = a + b > 6 (and a ≥ 4), and
let G = K1t,n be so that t + n = s + 2 (and t ≥ 4). We will focus our attention on the
follower H = K1t−1,n; its followers are H1 = K1t−2,n and H2 = K1t−1,n−1. Since t+n− 2 is
even, these two graphs are N positions, by induction and because, when n = 2, L is an
N position by Lemma 1.2(a). Hence, H is a P position, which makes G an N position.
(⇒) Assume that G = K1t,n, where t+n ≥ 4 is odd. The followers of G are G1 = K1t−1,n

and G2 = K1t,n−1. Since t + n− 1 is even, both G1 and G2 are N positions by the other
direction of this proof. Hence, G is a P position.

We finally get to prove the lemma.
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(⇐) Let s = t+n. We will proceed by induction on s. If s = 4 we get G = K12,2,2, which
is an N position by Lemma 2.1. We assume that K1a,2,b is an N position for some even
s = a + b ≥ 4. Now consider G = K1t,2,n, with t + n = s + 2 and notice that H = K1t+1,n

is one of its followers. Since t + n + 1 is odd, H is a P position by Claim 2. Hence, G is
an N position.
(⇒) Let t+n > 4 be odd and consider G = K1t,2,n. The followers of G are G1 = K1t−1,2,n,
G2 = K1t+1,n, and G3 = K1t,2,n−1. Since t+ n+ 1 and t+ n− 1 are even, both G1 and G3

are N positions by the other direction of this proof. If n = 2, observe that G1 = K1,2,n

is an N position by Lemma 1.2. For t = 2, G3 = K1t+1,2 has follower K1t+2 , with t + 2
odd, which is a P position by Lemma 1.2(a) making G3 an N position. G2 is also an N
position by Claim 2. It follows that G is a P position. �

The following lemma continues addressing complete multipartite graphs with many
singletons.

Lemma 3.2 The following hold for graphs K1t,s,n, where n, s, t ∈ N and n, s, t ≥ 2.

(1) For s < t + 1, K1t,s,n is an N position if and only if |V | is even.

(2) For s = t + 1, K1t,s,n is an N position for all n ≥ s.

(3) For s > t + 1, K1t,s,n is an N position if and only if |V | is odd.

Proof. (1) ⇐) We will proceed by induction on k, where 2k = t+ s+ n. First, we need
to discuss a few special cases separately. If n is even then K12,2,n is an N position for n
even by Lemma 3.1. If s = 2 then K1t,2,n is an N position by Lemma 3.1 (as t + n is
even). From now on we assume that s ≥ 3.

Assume that G = K1a,b,c is an N position when 6 ≤ a+ b+ c ≤ 2k, and a, b, c ≥ 2 and
b < a + 1. Consider G = K1t,s,n, with t + s + n = 2(k + 1) and s ≥ 3. We will focus our
attention on the follower I = K1t,s−1,n, which has followers I1 = K1t−1,s−1,n, I2 = K1t,s−2,n,
and I3 = K1t,s−1,n−1. Note that all of them have 2k vertices. Since s − 1 < t + 1 and
s− 1 ≥ 2, we get that I3 is an N position by our hypothesis. Similarly, if s > 3 then I2
is also an N position, as s− 2 < t+ 1 and s− 2 ≥ 2. For s = 3, I2 = K1t+1,n, which is an
N position by Lemma 3.1 (as t + 1 + n is even). Finally for I1, since s− 1 < (t− 1) + 1
and s− 1 ≥ 2, it is also an N position. It follows that I is a P position, and thus G is an
N position.

(3) ⇐) We will proceed by induction on k, where 2k+1 = t+s+n. Firstly, we note that,
for t = 2 and n odd, K12,4,n is an N position by Lemma 2.1. From now on we assume
that t ≥ 3.

Assume that G = K1a,b,c is an N position when 7 ≤ a+ b+ c ≤ 2k− 1, and a, b, c ≥ 2
with b > a + 1. Consider G = K1t,s,n, with t + s + n = 2k + 1 and t ≥ 3. We will
focus our attention on the follower H = K1t−1,s,n, which has followers H1 = K1t−2,s,n,
H2 = K1t−1,s−1,n, and H3 = K1t−1,s,n−1. Note that all of these graphs have 2k− 1 vertices.
If t > 3, we get that H1 is an N position by our hypothesis since s > (t − 2) + 1 and
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t − 2 ≥ 2. For t = 3, H1 = K1,s,n with s ≥ 2 and s + n even, which is an N position by
Lemma 1.2. Similarly, since s ≥ 3 then H2 is also an N position, as s − 1 > (t − 1) + 1
and s − 1 ≥ 2. Finally, since n ≥ 3 because partitions are listed in increasing order, H3

is also an N position as s > t and n− 1 ≥ 2. It follows that H is a P position, and thus
G is an N position.

(2) We will proceed by induction on v = 2t+ n+ 1. But first we remark on the fact that
K12,3,n is an N position, for all n, by Lemma 2.1. So, from now on, we only need to prove
our claim for t ≥ 3. As usual, the sizes of the partitions are listed in increasing order,
and so t + 1 ≤ n.

Assume that K1a,a+1,c is an N position when 8 ≤ 2a+c+1 ≤ v, where a ≥ 2. Consider
G = K1t,t+1,n such that 2t + n + 1 = v + 2. The followers of G are H = K1t−1,t+1,n,
I = K1t,t,n, and J = K1t,t+1,n−1.

Case 1: If v is odd, we assume Player 1 leaves H as a follower. The followers of H are
H1 = K1t−2,t+1,n, H2 = K1t−1,t,n, and H3 = K1t−1,t+1,n−1; all of them having v vertices.

• For H1: The graphs K1,4,n (t = 3 and n even) and K12,5,n (t = 4 and n even)
are N positions by Lemma 1.2 and Lemma 2.1, respectively. For t ≥ 5, since
t + 1 > (t− 2) + 1 and v is odd, H1 is an N position by (3 ⇐).

• H2 is an N position by our inductive hypothesis, together with t− 1 ≥ 2.

• For H3: Note that if t + 1 > n− 1 the graph is H3 = K1t−1,n−1,t+1. However, since
t + 1 ≤ n, we must have that (t− 1) + 1 = n− 1. In this case, H3 is an N position
by our inductive hypothesis. For t + 1 ≤ n− 1, since t + 1 > (t− 1) + 1, t− 1 ≥ 2,
n− 1 ≥ 2, and v is odd, H3 is an N position by (3 ⇐).

Thus, H is a P position, making G an N position.
Case 2: If v is even, we assume Player 1 leaves I as a follower. The followers of I are

I1 = K1t−1,t,n, I2 = K1t,t−1,n, and I3 = K1t,t,n−1; all of them having v vertices.

• I1 is an N position by our inductive hypothesis, together with t− 1 ≥ 2.

• For I2: Since 2 ≤ t− 1 < t + 1 and v is even, I2 is an N position by (1 ⇐).

• For I3: Just like in the proof of (1⇐), we need to look at the case when the last two
subindexes ‘switch’. This situation reduces to us having to look at when n = t + 1;
we get that K1t,t,t is an N position by (1 ⇐). When t ≤ n− 1, we get that I3 is an
N position by (1 ⇐), as t < t + 1 and v is even.

It follows that I is a P position, making G an N position.

(1) ⇒) Let s < t+ 1 and |V | be odd. If s = t then G1 is an N position, as s = (t−1) + 1,
by (2); if s < t then G1 is still an N position by the proof of (1 ⇐), as s < (t−1)+1 (the
subcase t = 2 uses Lemma 1.2 to get to the same conclusion since it would make s ≤ 2).
Now for G2. If s = 2, then t + n + 1 is even and we use Lemma 3.1 to get that G2 is an
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N position. If s > 2, since s− 1 < t + 1, G2 is an N position by (1 ⇐). Finally, for G3.
If n = 2, we get G3 = K1t+1,s with t + s + 1 even and use Lemma 3.1 to show that G3 is
an N position. When n > 2, we use that s < t + 1 to get that G3 is an N position by (1
⇐). If s = n, we can rewrite G3 = K1t,n−1,s which is still an N position much like G2. It
follows that G is a P position.

(3) ⇒) Let s > t + 1 and |V | to be even. For G1, if t = 2 then G1 is an N position by
Lemma 1.2. When t > 2, we get that s > (t− 1) + 1, and so G1 is an N position by the
other direction of (3). Now, when s = t + 2 we get that G2 = K1t,t+1,n is an N position
by (2), whereas if s > t + 2 then G2 is still an N position by the other direction of (3)
(since s > t + 1 ≥ 3, we do not need to address s = 2). Likewise, since partitions are
listed in increasing order, n ≥ s ≥ 3. Finally, if s = n, we treat G3 = K1t,n−1,s as G2, and
if s < n we use that s > t+ 1 to get G3 to be an N position by the other direction of (3).
Hence, G is a P position. �

Notice that the winner of most of the graphs considered in Lemma 3.2 depends on |V |
being even or odd. We next continue exploring this alternating pattern, now looking at
graphs that contain several partitions containing exactly two vertices.

Lemma 3.3 For n ∈ N, where n ≥ 2, K12,22,n is an N position if and only if |V | is even.

Proof. (⇐) Consider G = K12,22,n, with any even n ≥ 2 and notice that H = K13,2,n is
a follower. We can use Lemma 3.1 with t+n odd to get that H is a P position, and thus
G is an N position.
(⇒) Now consider G = K12,22,n, where n > 2 is odd. It is easy to see that G will have
three followers: G1 = K1,22,n, G2 = K13,2,n, and G3 = K12,22,n−1, of which the last two are
N positions by Lemma 3.1 and the other direction of this proof, respectively. For G1, the
follower K12,2,n is a P position by Lemma 2.1, thus making G1 an N position. It follows
that G is a P position. �

The previous lemma will be useful to prove the following, very important, lemma.

Lemma 3.4 Assume that n, s, t ∈ N, s, t ≥ 1, and n ≥ 2. Then, the following hold for
graphs K1,2t,s,n:

(1) For s < 2, K1,2t,s,n is an N position if and only if |V | is even.

(2) For s = 2, K1,2t,s,n is an N position for all n ≥ s.

(3) For s > 2, K1,2t,s,n is an N position if and only if |V | is odd.

Proof. We start by looking at when t = 1. These follow because G = K12,2,n, with |V |
even, is an N position by Lemma 2.1. G = K1,2,s,n, with |V | odd, has the follower K2,s,n

which is a P position by Lemma 1.3, making it an N position as well. Finally, K1,2,n is
an N position by Lemma 1.2. From now on we will consider t > 1.
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(1) ⇒) We start by noticing that K12,22,n, for odd n > 2, is a P position by Lemma 3.3.
We now assume that for some m,n, t ≥ 2, and |V (G)| < m (m odd) that G = K12,2t,n is
a P position when n is odd. Consider H = K12,2a,b with b odd and |V (H)| = m. This
graph has followers: H1 = K1,2a,b, H2 = K13,2a−1,b, and H3 = K12,2a,b−1. Doing induction
on a + b, with b odd, we get that H1 has the follower K12,2a−1,b and H2 has the follower
K12,2a−2,b, both of which are P positions by our hypothesis. Thus, H1 and H2 are N
positions. For H3, we use our hypothesis with b − 2 being odd to get that the follower
K12,2a,b−2 is a P position, making H3 an N position as well. It follows that H is a P
position.

(1) ⇐) Now consider G = K12,2t,n with n, t ≥ 2 and n even. Observe that G has the
follower K12,2t,n−1, where n− 1 is odd, which is a P position by the other direction of this
proof. Hence, G is an N position.

(2) Assume G = K1,2t,n, with n, t ≥ 2 and |V (G)| < m is an N position, for all n ≥ 2. Let
H = K1,2a,b with |V (H)| = m. If b is even, we use Lemma 1.3 to get that H has a follower
K2a,b, with |V | even, that is a P position. If b is odd, H has the follower K12,2a−1,b, which
is a P position by Lemma 2.1, for a = 2, and by (1), for a > 2. Hence, H is also an N
position.

(3) ⇐) Observe that for t ≥ 2 and n, s > 2, any graph G = K1,2t,s,n with |V | odd will
have the follower K2t,s,n which is a P position by Lemma 1.3. So G is an N position.

(3) ⇒) Consider the base case G = K1,22,3,n with |V | even, which has followers K22,3,n

and K1,23,n; these are both N positions by Lemma 1.3 and (2), respectively. The follower
K12,2,3,n has its own follower K13,3,n that is a P position by Lemma 3.2, making it another
N position. The last follower K1,22,3,n−1, also has its own follower K22,3,n−1 that is a P
position by Lemma 1.3, making it an N position as well. It follows that G is a P position.

Now, for t ≥ 2 and n, s > 2, take as induction hypothesis that G = K1,2t,s,n, with
|V (G)| even, is a P position. Consider H = K1,2t+1,s,n with |V (H)| = m even, will have
the followers:

• K2t+1,s,n. Since |V | = m− 1 is odd, this is an N position by Lemma 1.3.

• K12,2t,s,n. This graph has K1,2t,s,n as a follower, which by our hypothesis is a P
position, making K12,2t,s,n an N position.

• K1,2t+1,s−1,n and K1,2t+1,s,n−1. Since m is odd, both of these graphs are N positions
by the other direction of this proof, even when s = n. However, if s = 3 or n = 3
we have that these graphs are N positions by (2) instead.

Since all followers of H are N positions, it follows that H is a P position. �

Since the results of Lemma 3.4 closely resemble those in Lemma 3.2, we continue our
work on trying to generalize, and unify, these results.
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Theorem 3.5 Assume that n, s, t ∈ N, t ≥ 1, and s, n ≥ 2. Then, the following hold for
K12,2t,s,n.

(1) For s < 3, K12,2t,s,n is an N position if and only if |V | is even.

(2) For s = 3, K12,2t,s,n is an N position for all n ≥ s.

(3) For s > 3, K12,2t,s,n is an N position if and only if |V | is odd.

Proof. (1) ⇐) Observe that G = K12,2t,s,n, with s < 3 and |V | even, is either the graph
G1 = K13,2t,n or G2 = K12,2t+1,n. Since G1 has the follower K12,2t,n, which is a P position
by Lemma 3.4, G1 is an N position. Similarly, G2 is an N position by Lemma 3.4. Hence,
G is an N position.

(1) ⇒) We start with a base case G = K13,2,n, for any even n ≥ 2. The first follower of G,
G1 = K12,2,n is an N position by Lemma 2.1. The second follower, G2 = K14,n, is an N
position by Lemma 3.1. The third follower, G3 = K13,2,n−1, itself has a follower, K12,2,n−1,
which is a P position by Lemma 2.1 and is thus an N position.

Now assume that G = K12,2t,s,n, with s < 3 and |V | < m, is a P position when |V | is
odd. Then, for H = K12,2a,b,c, with |V (H)| = m odd, we have the followers H1 = K1,2a,b,c,
H2 = K13,2a−1,b,c, H3 = K12,2a,b−1,c, and H4 = K12,2a,b,c−1.

• H1 is an N position by Lemma 3.4, for both b = 1 and b = 2.

• H2 has the follower K12,2a−1,b,c which is a P position by our induction hypothesis,
which makes H2 an N position.

• H3 and H4 are N positions by the other direction of this proof, as they have an
even number of vertices.

Since all followers of H are N positions, it follows that H is a P position.

(2) When n is even, G has the follower K1,2t,3,n, which is a P position by Lemma 3.4.
When n is odd, G has the follower K12,2t+1,n, which is a P position by (1). In either case,
G is an N position.

(3) ⇐) Observe that G = K12,2t,s,n with 3 < s ≤ n and |V | odd has K1,2t,s,n as a follower,
which is a P position by Lemma 3.4, so G is an N position.
(3) ⇒) We start with a base case G = K12,2,4,n, for any even n ≥ 4, which has the
followers G1 = K1,2,4,n, G2 = K13,4,n, G3 = K12,2,3,n, and G4 = K12,2,4,n−1. G1, G3, and
G4 are N positions by Lemma 3.4, (2), and the other direction of this proof, respectively.
G2 has a follower K12,4,n that is a P position by Lemma 2.1. It then follows that G is
a P position since all its followers are N positions. Now assume that G = K12,2t,s,n,
with s > 3 and |V | < m, is a P position when |V | is even. Then, for H = K12,2a,b,c with
|V (H)| = m even, we have the followers H1 = K1,2a,b,c, H2 = K13,2a−1,b,c, H3 = K12,2a,b−1,c,
and H4 = K12,2a,b,c−1.
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• H1 is an N position by Lemma 3.4.

• H2 has the follower K12,2a−1,b,c which is a P position by our induction hypothesis,
so H2 is an N position.

• H3 and H4 are N positions by the other direction of this proof, as they have an
even number of vertices.

Since all the followers of H are N positions, H is a P position. �

4 Proof of Main Theorem

In this section, we prove Theorem 1.4 by using results in previous sections. We first
generalize Lemmas 3.4 and 3.5.

Lemma 4.1 Assume that m,n, s, t ∈ N, s, t ≥ 1, and m,n ≥ 2. Then, the following hold
for graphs K1t,2s,m,n.

(1) For m < t + 1, K1t,2s,m,n is an N position if and only if |V | is even.

(2) For m = t + 1, K1t,2s,m,n is an N position for all n ≥ m.

(3) For m > t + 1, K1t,2s,m,n is an N position if and only if |V | is odd.

Proof. We will prove most of these statements by induction on |V |.

(1) ⇐) Observe that the base case K12,24 , where m,n = 2 and |V | = 10, is an N position
by Lemma 3.4. Now assume that K1t,2s,m,n, with m < t + 1, is an N position, for
10 ≤ |V | ≤ v − 2, when |V | is even. Then G = K1a,2b,c,d, with |V | = v and c < a + 1, has
the follower H = K1a,2b,c−1,d. We look at the followers of H:

• H1 = K1a−1,2b,c−1,d is an N position by our induction hypothesis, and by Theorem
3.5 for a = 2.

• H2 = K1a,2b−1,c−1,d, H3 = K1a,2b,c−2,d, and H4 = K1a,2b,c−1,d−1 are N positions by our
induction hypothesis.

Hence, H is a P position and G is an N position.

(3) ⇐) Observe that the base case K12,22,4,5, where |V | = 15, is an N position by Lemma
3.4. Now assume that K1t,2s,m,n, with m > t + 1, is an N position, for 15 ≤ |V | ≤ v − 2
when |V | is odd. Then G = K1a,2b,c,d, with |V | = v and c > a + 1, has the follower
J = K1a−1,2b,c,d. We look at the followers of J :

• J1 = K1a−2,2b,c,d is an N position by our induction hypothesis, and by Lemma 1.3
for a = 2.
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• J2 = K1a−1,2b−1,c,d, J3 = K1a−1,2b,c−1,d, and J4 = K1a−1,2b,c,d−1 are N positions by our
induction hypothesis.

Hence, J is a P position and G is an N position.

(1) ⇒) Take G = K1t,2s,m,n with |V | odd, s, t ≥ 1, m,n ≥ 2, and m < t+ 1. Note that all
the followers of G have an even number of vertices, and thus if m < t+ 1 we get that the
follower G1 = K1t,2s,m−1,n is an N position by (1) ⇐). Similarly, if m < t, the follower
G2 = K1t−1,2s,m,n is also an N position by (1) ⇐). Note that the follower G2 = K1t−1,2s,t,n

(when m = t > 1) is also an N position by (1) ⇐); the case t = 1 yields both m ≥ 2,
and m < 2, which is a contradiction. Now, the follower G3 = K1t,2s−1,m,n is an N position
by (1) ⇐) (for s > 1); the case when s = 1 yields G3 = K1t,m,n, which is an N position
by Lemma 3.2. Finally, the follower G4 = K1t,2s,m,n−1 is an N position by (1) ⇐) (for
n > 2); the case when n = 2 yields G4 = K1t+1,2s,m, which is an N position by Lemma 3.2.

(3) ⇒) follows in almost the same way (1) ⇒) did.

(2) Note that K12,2,3,n is an N position by Lemma 3.4. Now assume K1t,2s,t+1,n (where
the smallest |V | can be is 10) is an N position, for all n and for all 10 ≤ |V | < v, for
some v ∈ N. Now consider G = K1a,2b,a+1,d be so that |V (G)| = v.

Suppose that v is odd. We look at the follower H = K1a−1,2b,a+1,d and its own followers:
H1 = K1a−2,2b,a+1,d, H2 = K1a−1,2b−1,a+1,d, H3 = K1a−1,2b,a,d, and H4 = K1a−1,2b,a+1,d−1.
Since H1, H2, H4 have an odd number of vertices and a + 1 > a, they are N positions
by (3) ⇐). By our induction hypothesis, H3 is also an N position, which makes H a P
position. Hence, G is an N position.

Now suppose that v is even. We focus our attention on the follower J = K1a,2b,a,d and
on its followers: J1 = K1a−1,2b,a,d, J2 = K1a,2b−1,a,d, J3 = K1a,2b,a−1,d, and J4 = K1a,2b,a,d−1.
Since J2, J3, J4 have an even number of vertices and a < a + 1, they are N positions by
(1) ⇐). By our induction hypothesis, J1 is also an N position, making J a P position.
Thus, G is an N position. �

Since our Main Theorem simply merges the results in Lemma 4.1 with Lemma 3.2,
we have finished its proof. Next we illustrate, with an example, how to play Grim on a
graph that is considered in our Main Theorem.

Example 4.2 We consider K12,22,32 , and we play by deleting the vertex in red (in the
diagram below). We see that after a few moves we get K12,2,2, which is an N position by
Example 2.2. Since at that point the next player to make a move is Player 1, we get that
K12,22,32 is won by Player 1, and thus it is also an N position. This result is consistent
with part (2) in Theorem 1.4, as m = 3 = 2 + 1 = t + 1.
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