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Abstract - We provide the detailed proofs of two recent claims of Csordas and Forgács
asserting that two particular Bessel-type functions generate classical multiplier sequences
whose generic terms are Cauchy-products of Laguerre polynomials and hypergeometric func-
tions, respectively. The way these sequences are generated involves functions from the
Laguerre-Pólya class. We address the question whether these functions are unique in any
way as generators of a given classical multiplier sequence.
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1 Introduction

Any sequence of real numbers {γn}∞n=0 induces a linear operator Γ : R[x]→ R[x] by setting
Γ[xn] = γnx

n for all n ∈ N ∪ {0}, and extending the action to all of R[x] linearly. The
study of the various properties of such operators – in particular whether they map the set
of real rooted polynomials into itself – is still an active area of research, despite its over
one hundred year-old origins dating back to Laguerre and Hermite. Although the Pólya-
Schur program (originated by G. Pólya and J. Schur in their seminal 1914 paper [8]) has
culminated in the 2009 paper [1] of J. Borcea and P. Brändén, which characterizes linear
operators preserving classes of polynomials with zero loci in circular domains, certain
interesting questions related to such operators (and the sequences they represent) remain
unsettled. The following are two open problems of interest:

Problem A: Identify explicit defining characteristics of functions f : R → R for which
the operator associated to {γn}∞n=0 = {f(n)}∞n=0 maps the set of real rooted polynomials
into itself.

We hasten to remark that a function f has this property if and only if at least one
of ϕ(x), ϕ(−x),−ϕ(x) or −ϕ(−x) belongs to the class L − P+ (cf. Definition 2.1), where
ϕ(x) =

∑∞
n=0 f(n)/n!xn. This characterization however is not easy to use. What Problem

A is asking about are properties of such functions that are easier to check, such as having
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only real zeros, or having a certain order and type, for example. Laguerre’s Theorem is
one result in this direction, but in general, it is not even clear what types of functions
one should be considering. The intimate connection of reality preserving sequences to a
certain class of real entire functions (namely the Laguerre-Pólya class, cf. Definition 2.1)
seems to suggest that one perhaps should consider only real entire functions. Alas, even
with such an added restriction there is no known answer to this problem. In addition,
there are sequences involving functions that are not entire, and yet either conjectured
or proven to be reality preserving (see [3]), such as {

√
n/n!}∞n=0, {ln(n + 2)/n!}∞n=0, and

{[ln(n+ 2) +
∫∞
n+2
{t}/t2dt]/n!}∞n=0.

Problem B: Give a systematic way to generate reality preserving sequences, i.e. se-
quences {γn}∞n=0 whose associated operator Γ maps the class of real rooted polynomials
into itself (we call these sequences multiplier sequences, cf. Definition 2.3).

The set of all multiplier sequences is a monoid under the operation

{γn}∞n=0 ∗ {βn}∞n=0 = {γnβn}∞n=0.

In particular, the Hadamard product of two multiplier sequences is again a multiplier
sequence. Thus, we get a somewhat unsatisfying answer to Problem B: Every multiplier
sequence can be decomposed into a product of two multiplier sequences (neither of which is
the identity of the monoid), since {γn}∞n=0 = {rnγn}∞n=0 ∗ {(1/r)n}∞n=0, where r ∈ R \ {0}.
This fact perhaps also explains why researchers have looked in other directions when
trying to understand how to obtain families of multiplier sequences from known multiplier
sequences. In a recent paper [3], the authors investigate this question, and suggest an
approach that addresses the problem by looking at elements of the Laguerre-Pólya class,
rather than at multiplier sequences directly. By doing so, the authors create large families
of classical multiplier sequences, parametrized by one or two parameters. In particular,
they show that if ϕ,Φ are elements of the Laguerre-Pólya class with non-negative Taylor
coefficients, and s, t ∈ [0, 1], then the sequence {Cϕ,Φ

n (t, s)}∞n=0 generated by the relation

e(2−s−t)xϕ(tx)Φ(sx) =
∞∑
n=0

Cϕ,Φ
n (t, s)

n!
xk

is a classical multiplier sequence.
The goal of this paper is to verify by direct computation two claims made in [3]

regarding the explicit form of the sequence Cϕ,Φ
n (t, s) for particular choices of ϕ,Φ (see

Theorems 3.5 and 3.8). After the verification of these claims, we set out to investigate
the extent to which the functions ϕ and Φ giving rise to a sequence {Cϕ,Φ

n (t, s)}∞n=0 are
unique.
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2 Background

In order to be able to formulate the claims referred to in the introduction, we need to
introduce some definitions and main results in the theory of multiplier sequences. We
begin with the definition of a class of functions which play a central role in the theory.

Definition 2.1 A real entire function ψ(x) =
∑∞

k=0

γk
k!
xk is said to belong to the Laguerre-

Pólya class, denoted by ψ ∈ L −P, if it can be represented as

ψ(x) = cxme−ax
2+bx

ω∏
k=1

(
1 +

x

xk

)
e−x/xk

where b, c ∈ R, xk ∈ R,m ∈ Z+ ∪ {0} , a ≥ 0, 0 ≤ ω ≤ ∞ and
∑ω

k=1

1

x2
k

< +∞. If, in

addition, γk ≥ 0 for all k ≥ 0, we say that ψ ∈ L −P+.

We remark that L −P is precisely the class of real entire functions
∑∞

k=0

ak
k!
xk, which

are locally uniform limits of real polynomials with only real zeros (see for example [6, Satz
9.2])

Definition 2.2 A real entire function ψ(x) =
∑∞

k=0

γk
k!
xk is said to be type I in the

Laguerre-Pólya class, denoted by ψ ∈ L −PI, if ψ(x), or ψ(−x), can be represented as

ψ(x) = cxmeσx
ω∏
k=1

(
1 +

x

xk

)
,

where c ∈ R, m is a non-negative integer, σ ≥ 0, xk > 0, 0 ≤ ω ≤ ∞ and
∑ω

k=1

1

xk
< +∞.

Definition 2.3 A sequence of real numbers, {γk}∞k=0, is called a classical multiplier se-
quence (of the first kind) if the associated linear operator Γ : R[x] → R[x] defined by
Γ[xk] = γkx

k for k = 0, 1, 2, . . ., satisfies

ZC(Γ[p(x)]) = 0 whenever ZC(p(x)) = 0, ∀ p(x) ∈ R[x],

where ZC[p(x)] denotes the number of non-real zeros of the polynomial p(x) counting
multiplicity, and ZC[0] = 0.

The following theorem is due to G. Pólya and J. Schur, and characterizes classical multi-
plier sequences of the first kind.

Theorem 2.4 (see [8]) Let {γk}∞k=0 be a sequence of non-negative terms. The following
are equivalent:

(i) {γk}∞k=0 is a classical multiplier sequence;

the pump journal of undergraduate research 1 (2018), 14-29 16



(ii) Γ [(1 + x)n] ∈ L −P+ ∀n;

(iii) Γ [ex] =
∑∞

k=0

γk
k!
xk ∈ L −P+.

Remark 2.5 The reader will note that Theorem 2.4 refers to sequences of non-negative
terms. Nonetheless, the theorem is a characterization of all classical multiplier sequences
of the first kind. Indeed, since the terms of such sequences are either of the same sign
or alternate in signs, and the sequences {−1}∞k=0, {(−1)k}∞k=0 and {(−1)k+1}∞k=0 are all
classical multiplier sequences (see [5, p. 341]), one achieves a complete characterization by
considering merely those sequences with non-negative terms.

We close this section with the definition of the Cauchy product of two series, as this
product is featured prominently in the rest of the paper.

Definition 2.6 Let
∑∞

i=0 aix
i and

∑∞
j=0 bjx

j be two power series with complex coefficients
{ai} and {bj}. The Cauchy product of the two power series is defined as the discrete
convolution as follows: (

∞∑
i=0

aix
i

)(
∞∑
j=0

bjx
j

)
=
∞∑
k=0

ckx
k,

where ck =
∑k

`=0 a`bk−`.

3 Main results

The proofs of the two main results in our paper both employ a suitably constructed linear
transformation on a lattice. Here we present the preliminary results that will enable us
to complete the proofs of the main results. Consider the integer lattice L, whose points
(m, `, j) are described by the inequalities

0 ≤ m ≤ n

0 ≤ ` ≤ m

0 ≤ j ≤ n−m,

and let M be the matrix

M =

 1 −1 1
1 −1 0
0 1 0

 .
Since detM = 1, M : R3 → R3 is an injective linear transformation. As Lemma 3.1
shows, M : L→ L is in fact a bijection.

Lemma 3.1 Let M and L be as above. Then M : L→ L is a permutation.
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Proof. Since M is injective, we only need to check surjectivity. Let (j, `, k) ∈ L. One
easily checks that

M−1

 j
`
k

 =

 0 1 1
0 0 1
1 −1 0

 j
`
k

 =

 k + `
k

j − `

 ,
and hence (k+`, k, j−`) is a point such that M [k+`, k, j−`]T = [j, `, k]T . What remains
to verify is that (k + `, k, j − `) ∈ L. To this end, note that the restrictions

0 ≤ j ≤ n,

0 ≤ ` ≤ j, and

0 ≤ k ≤ n− j

imply that

0 ≤ k + ` ≤ n,

0 ≤ k ≤ k + `, and

0 ≤ j − ` ≤ n− k − `,

where the last constraint comes from rearranging k ≤ n− j to j ≤ n− k. It now follows
that (k + `, k, j − `) ∈ L if (j, `, k) ∈ L. The proof of the lemma is complete. �

Lemma 3.2 Let (m, `, j) ∈ L. Then(
n

m

)(
m

`

)(
n−m
j

)
=

(
n

m− `+ j

)(
m− `+ j

m− `

)(
n− (m− `+ j)

`

)
Proof. We compute(

n

m− `+ j

)(
m− `+ j

m− `

)(
n− (m− `+ j)

`

)
=

n!(m− `+ j)!(n− (m− `+ j))!

(m− `+ j)!(n− (m− `+ j))!(m− `)!`!j!(n− (m+ j))!

=
n!

(m− `)!`!j!(n− (m+ j))!

=
n!m!(n−m)!

m!(n−m)!(m− `)!`!j!(n− (m+ j))!

=

(
n

m

)(
m

`

)(
n−m
j

)
.

�
We need one more auxiliary lemma to prove before we can tackle the main theorems of
the paper.
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Lemma 3.3 Suppose that

ψ(x) =
∞∑
k=0

γk
k!
xk.

For fixed s, t ∈ (0, 1), let the sequence {βn}∞n=0 be defined by the relation

∞∑
k=0

βk
k!
xk = e(2−s−t)xψ(xt)ψ(xs).

Then

βn =
n∑

m=0

m∑
`=0

n−m∑
j=0

(
n

m

)(
m

`

)(
n−m
j

)
t`sm−`(1− t)j(1− s)n−m−jγ`γm−`.

Proof. Suppose that ψ(x) is as in the statement. We compute

ψ(tx)ψ(sx) =

(
∞∑
k=0

γkt
kxk

k!

)(
∞∑
j=0

γjs
jxj

j!

)

=
∞∑
n=0

(
n∑
`=0

γ` t
`

`!
· γn−` s

n−`

(n− `)!

)
xn.

It follows that

e(2−t−s)xψ(tx)ψ(sx) =

(
∞∑
n=0

(
n∑
`=0

(
n

`

)
γ` γn−`t

`sn−`

)
xn

n!

)(
∞∑
k=0

(2− t− s)kxk

k!

)

=
∞∑
j=0

(
j∑

m=0

(
m∑
`=0

(
m

`

)
1

m!
γ`γm−`t

`sn−`

)
(2− t− s)j−m

(j −m)!

)
xj

=
∞∑
j=0

(
j∑

m=0

(
j

m

){ m∑
`=0

(
m

`

)
γ` γm−`t

`sm−`

}
(2− t− s)j−m

)
xj

j!
.

(1)

Expanding and simplifying yields

βn =
n∑

m=0

(
n

m

){ m∑
`=0

(
m

`

)
γ`γm−`t

`sm−`

}
(2− t− s)n−m

=
n∑

m=0

(
n

m

){ m∑
`=0

(
m

`

)
γ`γm−`t

`sm−`

}(
n−m∑
j=0

(
n−m
j

)
(1− t)j(1− s)n−m−j

)

=
n∑

m=0

m∑
`=0

n−m∑
j=0

(
n

m

)(
m

`

)(
n−m
j

)
t`sm−`(1− t)j(1− s)n−m−jγ`γm−`. (2)

�
We now proceed to the main results of the paper.
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Definition 3.4 Let n ∈ Z with n ≥ 0. The nth (simple) Laguerre polynomial Ln(x) is
given by

Ln(x) =
n∑
k=0

(−1)k

k!

(
n

k

)
xk. (3)

Theorem 3.5 Consider the modified Bessel function of the first kind with index zero (see
for example [4, p. 519]):

φ(x) = I0(2
√
x) =

∞∑
k=0

xk

k!k!
.

For fixed s, t ∈ (0, 1), let the sequence {βn}∞n=0 be defined by the relation

∞∑
k=0

βk
k!
xk = e(2−s−t)xφ(xt)φ(xs).

Then

(i) The sequence {βn} is a classical multiplier sequence;

(ii) The βn’s are given explicitly by

βn = (1− s)n
n∑

m=0

(
1− t
1− s

)m(
n

m

)
Lm

(
t

t− 1

)
Ln−m

(
s

s− 1

)
where Ln(x) is the nth Laguerre polynomial.

Proof. (i) Definition 2.1, along with the constraints placed on t and s, imply that
e(2−s−t)x ∈ L −P+. The fact that φ(x) ∈ L −P+ is a consequence of the fact that the
sequence {1/k!}∞k=0 is a classical multiplier sequence of positive terms (see for example [7,
Example 44, p. 43 ]). Since the class L −P+ is closed under multiplication, we conclude
that e(2−s−t)xφ(xt)φ(xs) ∈ L −P+, which, by Theorem 2.4, is equivalent to {βn}∞n=0

being a classical multiplier sequence.
For part (ii), let Ln(x) be the nth simple Laguerre polynomial (cf. Definition 3.4), and

write

C(ψ,ψ)
n (t, s) = (1− s)n

n∑
m=0

(
1− t
1− s

)m(
n

m

)
Lm

(
t

t− 1

)
Ln−m

(
s

s− 1

)
=

n∑
m=0

(
n

m

)
(1− t)m Lm

(
t

t− 1

)
(1− s)n−mLn−m

(
s

s− 1

)
.

We now demonstrate that βn is equal to C
(ψ,ψ)
n (t, s). To this end, note that
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(1− t)mLm
(

t

t− 1

)
= (1− t)m

m∑
k=0

(−1)k

k!

(
t

t− 1

)k (
m

k

)
=

m∑
k=0

(
m

k

)
tk(1− t)m−k

k!
,

and

(1− s)n−mLn−m
(

s

s− 1

)
=

n−m∑
j=0

(
n−m
j

)
sj(1− s)n−m−j

j!
.

Consequently,

(1− t)m Lm
(

t

t− 1

)
(1− s)n−mLn−m

(
s

s− 1

)
=

(
m∑
l=0

(
m

`

)
1

`!
t`(1− t)m−`

)(
n−m∑
j=0

(
n−m
j

)
1

j!
sj(1− s)n−m−j

)

=
m∑
`=0

n−m∑
j=0

(
m

`

)(
n−m
j

)
t`(1− t)m−`sj(1− s)n−m−j 1

`!j!
,

and

C(ψ,ψ)
n (t, s) =

n∑
m=0

m∑
`=0

n−m∑
j=0

(
n

m

)(
m

`

)(
n−m
j

)
t`(1− t)m−`sj(1− s)n−m−j 1

`!

1

j!
. (4)

We now apply the change of variables induced by M , i.e. the change (m, `, j) −→ (m −
` + j,m − `, `). By Lemma 3.1 the lattice L is preserved under this transformation.
Furthermore, the generic summand in (2) transforms as follows:(

n

m

)(
m

`

)(
n−m
j

)
t`sm−`(1− t)j(1− s)n−m−jγ`γm−` −→(

n

m− `+ j

)(
m− `+ j

m− `

)(
n− (m− `+ j)

`

)
tm−`sj(1− t)`(1− s)n−m−jγm−`γj.

We now sum over m, ` and j, use Lemma 3.2 and the symmetry of binomial coefficients,
and substitute γk = 1

k!
to arrive at the conclusion - via comparing (2) with (4) - that

βn = C
(ψ,ψ)
n (t, s), as desired. �

Before we can state the second claim, we give the definition of the confluent hypergeo-
metric function and establish an auxiliary lemma.
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Definition 3.6 (see [9, Ch. 4]) The confluent hypergeometric function is given by

1F1(a; b; z) = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+ . . . =

∞∑
k=0

(a)k
(b)k

zk

k!
(5)

where (a)k := a(a+ 1) · · · (a+ k− 1) is the rising factorial. If a and b are integers, a ≤ 0,
and either b > 0 or b < a, then the hypergeometric series yields a polynomial with a finite
number of terms. If b ∈ Z and b ≤ 0, then 1F1(a; b; z) is undefined.

Lemma 3.7 For k ∈ Z such that k ≥ 0,

4−k(
1
2

)
k

=
k!

(2k)!
.

Proof. Note that (x)k = Γ(x+k)
Γ(x)

, Γ
(

1
2

)
=
√
π, and Γ

(
1
2

+ k
)

= (2k)!
4kk!

√
π. With these

identities in hand and with the choice x = 1/2 we obtain

4−k(
1
2

)
k

=
4−k

Γ( 1
2

+k)
Γ( 1

2)

=
4−kΓ

(
1
2

)
Γ
(

1
2

+ k
)

=
4−k
√
π

(2k)!
4kk!

√
π

=
4−k4kk!

(2k)!

=
k!

(2k)!
.

�
We are now ready to formulate the second result.

Theorem 3.8 Consider the modified hyperbolic cosine function φ(x) =
∞∑
k=0

xk

(2k)!
. Let the

sequence {βk}∞k=0 be defined by

∞∑
k=0

βk
k!
xk = e(2−s−t)xφ(xt)φ(xs),

where s, t ∈ (0, 1).
Then

(i) The sequence {βn} is a classical multiplier sequence;
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(ii) The βn are given by the expression

(1− s)n
n∑

m=0

(
n

m

)(
1− t
1− s

)m
1F1

[
−m;

1

2
;

t

4(t− 1)

]
1F1

[
−(n−m);

1

2
;

s

4(s− 1)

]
.

Proof. In the proof of Theorem 3.5 we already argued that e(2−s−t)x ∈ L −P+. We
note that φ(x) is in L −P+, since

φ(x) = cosh(
√
x) =

∞∑
k=0

xk

(2k)!
=
∞∏
k=0

(
1 +

x(
πk + π

2

)2

)

is a factorization of the form required by Definition 2.1. Since L −P+ is closed under
multiplication, we obtain that {βn}∞n=0 is a classical multiplier sequence, which was our
first claim.
(ii) By Lemma 3.3, we have the following representation for βn:

βn =
n∑

m=0

m∑
`=0

n−m∑
j=0

(
n

m

)(
m

`

)(
n−m
j

)
t`sm−`(1− t)j(1− s)n−m−jγ`γm−`.

Using the same change of variables and arguments identical to those in the proof of
Theorem 3.5, we obtain the ‘transformed’ representation

βn =
n∑

m=0

m∑
`=0

n−m∑
j=0

(
n

m

)(
m

`

)(
n−m
j

)
(1− t)`tm−`sj(1− s)n−m−jγjγm−`. (6)

We now calculate

n∑
m=0

m∑
`=0

n−m∑
j=0

(
n

m

)(
m

`

)(
n−m
j

)
(1− t)`tm−`sj(1− s)n−m−jγjγm−`

= (1− s)n
n∑

m=0

m∑
`=0

(
n

m

)(
m

`

)
(1− t)`tm−`γm−`

n−m∑
j=0

(
n−m
j

)
sj(1− s)−m−jγj

∗
= (1− s)n

n∑
m=0

(
n

m

)
(1− s)−m

m∑
`=0

(
m

`

)
(1− t)m−`t`γ`

n−m∑
j=0

(
n−m
j

)
sj(1− s)−jγj

∗∗
= (1− s)n

n∑
m=0

(
n

m

)(
1− t
1− s

)m m∑
`=0

(
m

`

)
`!

(2`)!

(
t

1− t

)` n−m∑
j=0

(
n−m
j

)
j!

(2j)!

(
s

1− s

)j
∗∗∗
= (1− s)n

n∑
m=0

(
n

m

)(
1− t
1− s

)m
1F1

[
−m;

1

2
;

t

4(t− 1)

]
1F1

[
−(n−m);

1

2
;

s

4(s− 1)

]
,

where the starred equality follows from reversing the middle sum, the double starred
equality follows from substituting γk = k!

(2k)!
, and the triple starred equality follows from
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Lemma 3.7 and some algebraic manipulation. This completes the proof of Theorem 3.8.
�

Remark: The expression in Equation (6) is the one we get if we do the Cauchy
products (

e(1−t)xφ(xt)
) (
e(1−s)xφ(xs)

)
,

which in turn can be expressed in terms of the Jensen polynomials associated to cosh(x).
As the authors of [3] show, the coefficients βn can be expressed in terms of the Jensen
polynomials. The evaluation this way leads to the same conclusions with equally tedious
and lengthy calculations.

4 Classical multiplier sequences and the Cϕ,Φ
k (t, s) representation

The following definition and theorem appear in [3] (Definition 6 and Theorem 19, p.
1384).

Definition 4.1 Let γk ∈ R for k = 0, 1, 2, . . .. We say that the sequence {γk}∞k=0 has a
Ck-representation, if there exist functions ϕ,Φ ∈ L −P+ (not necessarily distinct) and
s, t ∈ R such that γk = Cϕ,Φ

k (t, s) for all k ∈ N0, where Cϕ,Φ
k (t, s) is as defined by the

generating relation

e((1−t)+(1−s))xϕ(xt)Φ(xs) =
∞∑
k=0

Cϕ,Φ
k (t, s)

k!
xk.

Theorem 4.2 (1) Every polynomially interpolated multiplier sequence of non-negative
terms can be written as a sequence {Cϕ,Φ

k (t, s)}∞k=0 for some functions ϕ,Φ ∈ L −P+

and (t, s) ∈ [0, 1] × [0, 1]. The choice of ϕ,Φ, t and s in this representation need not be
unique.
(2) Every geometric multiplier sequence (i.e., a sequence of the form {rk}∞k=0, r ∈ R) has
a Ck-representation.

Some of the details of the proof of the theorem were left somewhat vague in [3]. In
addition, there are aspects of this theorem we wanted to explore further. More explicitly,
we seek answers to the following questions:

(i) If {γk} has a Cϕ,Φ
k -representation, must it have one with ϕ = Φ? Similarly, if {γk}

has a Cϕ,ϕ
k -representation, must it have one with ϕ 6= Φ?

(ii) Demonstrate explicitly that the Cϕ,Φ
k -representation is not unique. What if we

require ϕ = Φ. Is the Ck representation unique then?

We begin our discussion by substantiating the first claim in Theorem 4.2. To this
end, recall that a sequence {γk}∞k=0 of non-negative terms is a CMS if and only if ϕ =∑∞

k=0

γk
k!
xk ∈ L −P+. If we set ϕ(x) =

∑∞
k=0

γk
k!
xk, Φ(x) ≡ 1, and t = s = 1. Then,

e((1−t)+(1−s))xϕ(xt)Φ(xs) = e0·xϕ(x) · 1 =
∞∑
k=0

γk
k!
xk.
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Therefore, every CMS of non-negative terms has a Cϕ,Φ
k (t, s) representation. Since most

of what follows exploits the form of p̂(x) in the relation
∑
p(k)/k!xk = p̂(x)ex, we present

here a result regarding p̂(x) (the statement of Theorem 4.3 appears without proof in [3,
p. 1385].)

Theorem 4.3 For any p ∈ R[x],

∞∑
k=0

p(k)

k!
xk = p̂(x)ex,

where p̂(x) = a0 +
∑n

j=1

(∑n
k=j akS2(k, j)

)
xj, and S2(k, j) denote the Stirling numbers

of the second kind.

In order to be able to prove the theorem, we need the following preliminary lemma. Since
the result is known, we omit the proof here, but remark that one can obtain it by induction
and using identities of the Stirling numbers.

Lemma 4.4 [2, Theorem 2] For any n ∈ N,

(xD)n[ex] =

(
n∑
j=1

S2(n, j)xj

)
ex,

where S2(k, j) denotes the Stirling numbers of the second kind ([10, Ch. 7]).

Proof. (of Theorem 4.3). We will prove the theorem by induction on the degree of p.
When n = 1, we may write p(x) = a1x+ a0. With this formulation, we calculate

∞∑
k=0

p(k)

k!
xk = (a1xD + a0)[ex]

= (a1x+ a0)ex

=

(
a0 +

1∑
j=1

(
1∑

k=1

akS2(k, j)

)
xj

)
ex.

We now proceed with the induction step.
Note that if the degree of p is n and p(x) =

∑n
k=0 akx

k, then

p̂(x)ex =
∞∑
k=0

p(k)

k!
xk

=
∞∑
k=0

∑n−1
j=0 ajk

j + ank
n

k!
xk
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=
∞∑
k=0

∑n−1
j=0 ajk

j

k!
xk +

∞∑
k=0

ank
n

k!
xk

= q̂(x)[ex] + an(xD)n[ex]

=

(
q̂(x) + an

(
n∑
j=1

S2(n, j)xj

))
ex

=

(
a0 +

n−1∑
j=1

(
n−1∑
k=j

akS2(k, j)

)
xj +

(
n∑
j=1

anS2(n, j)xj

))
ex

=

(
a0 +

n∑
j=1

(
n∑
k=j

akS2(k, j)

)
xj

)
ex,

and the proof is complete. �
We now answer question (i) in the negative. That is, we show that not every CMS of
non-negative terms has a Cϕ,Φ

k (t, s) representation with ϕ = Φ.

Lemma 4.5 There exist classical multiplier sequences of non-negative terms that admit
no Cϕ,Φ

k (t, s) representation with ϕ = Φ.

Proof. Suppose {γk}∞k=0 = {p(k)}∞k=0 is a classical multiplier sequence, where p is a
monic quadratic polynomial. Then,

∞∑
k=0

γk
k!
xk ∈ L −P+

and
∞∑
k=0

γk
k!
xk =

∞∑
k=0

p(k)

k!
xk

= p̂(x)ex

= (x+ r1)(x+ r2)ex, (7)

where r1, r2 ≥ 0. Assuming that a Cϕ,ϕ
k (t, s) representation exists, ϕ would have to be

linear, say ϕ(x) = mx+ b. Consequently,

ϕ(tx) = mtx+ b = x+ r1

and
ϕ(sx) = msx+ b = x+ r2.

By looking at the coefficient of x in the exponential factor in (7), we conclude that
(1− t) + (1− s) = 1, and hence t+ s = 1. The above equations imply that mt = ms = 1,
and thus t = s = 1

m
= 1

2
. However, the above system is still inconsistent, if r1 6= r2. We

conclude, that if p(x) = x2 + a1x + a0 and (a1 + 1)2 − 4a0 > 0, then {p(k)}∞k=0 does not
have a Cϕ,Φ

k (t, s) representation with ϕ = Φ. �
The converse of question (i) is settled in the following lemma.
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Lemma 4.6 If a classical multiplier sequence {γk}∞k=0 has a Cϕ,ϕ
k -representation, then it

also has one with ϕ 6= Φ.

Proof. The idea here is that if ϕ(x) is a polynomial of degree n with only real non-
positive zeros, then for all r 6= 0,

ϕ(tx) = c(tx)m
n−m∏
k=1

(
1 +

tx

xk

)

= rnc

(
t

r
x

)m n−m∏
k=1

(
1

r
+

tx

rxk

)
= rnϕ̄(tx).

Thus if we set Φ(x) = rnϕ(x), then ϕ̄(xt)Φ(xs) = ϕ(xt)ϕ(xs), but ϕ̄ 6= ϕ, and Φ 6= ϕ. �
An argument similar to the proof of Lemma 4.6 establishes that the functions in the

Cϕ,Φ
k (t, s) of a classical multiplier sequence are not unique.

Lemma 4.7 The functions in the Cϕ,Φ
k (t, s) representation of a classical multiplier se-

quence are not necessarily unique.

Proof. Suppose that p is a cubic polynomial so that {p(k)}∞k=0 is a classical multiplier
sequence. We write

∞∑
k=0

p(k)

k!
xk = x(x+ r1)(x+ r2)(x+ r3)ex, r1, r2, r3 ∈ (−∞, 0].

Note that

x(x+ r1)(x+ r2)(x+ r3)ex = 16
(x

2

)(x
2

+
r1

2

)(x
2

+
r2

2

)(x
2

+
r3

2

)
e(2−1/2−1/2)x.

We define

ϕ1(x) = 4x

Φ1(x) = 4
(
x+

r1

2

)(
x+

r2

2

)(
x+

r3

2

)
ϕ2(x) = 2x

(
x+

r1

2

)
Φ2(x) = 8

(
x+

r2

2

)(
x+

r3

2

)
.
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It is clear that ϕ1 6= Φ1, ϕ2 6= Φ2, and ϕ1 6= ϕ2, Φ1 6= Φ2, although

e((1−1/2)+(1−1/2))xϕ1

(x
2

)
Φ1

(x
2

)
=

∞∑
k=0

Cϕ1,Φ1

k

(
1
2
, 1

2

)
k!

xk

=
∞∑
k=0

p(k)

k!
xk

=
∞∑
k=0

Cϕ2,Φ2

k

(
1
2
, 1

2

)
k!

xk

= e((1−1/2)+(1−1/2))xϕ2

(x
2

)
Φ2

(x
2

)
.

We thus conclude that the functions a Cϕ,Φ
k (t, s) representation of a classical multiplier

sequence are in fact not unique. �
The second part of question (ii) is addressed next.

Lemma 4.8 There exist classical multiplier sequences with two distinct CΦ,Φ
k (t, s) repre-

sentations.

Proof. The key point here is that the pair (t, s) is part of the representation. With this
note in hand, a simple example demonstrates the claim. Suppose we let ϕ ≡ 1 and Φ ≡ 1.
Then,

e((1−1/3)+(1−2/3))xϕ

(
1x

3

)
ϕ

(
2x

3

)
= e((1−1/5)+(1−4/5))xΦ

(x
5

)
Φ

(
4x

5

)
and hence {

Cϕ,ϕ
k

(
1

3
,
2

3

)}∞
k=0

=

{
CΦ,Φ
k

(
1

5
,
4

5

)}∞
k=0

.

�
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[3] G. Csordas, and T. Forgács, Multiplier sequences, classes of generalized Bessel functions and open
problems, J. Math. Anal. Appl. 433 (2016), pp. 1369-1389. DOI: 10.1016/j.jmaa.2015.08.047

[4] S. Krantz, K.H. Rosen and D. Zwillinger (Eds.), Standard Mathematical Tables and Formulae, CRC
Press Inc., 1996.

[5] B. Ja. Levin, Distribution of Zeros of Entire Functions, Trans. Math. Mono., Vol. 5, Amer. Math.
Soc., Providence, RI, 1964; revised ed. 1980.

[6] N. Obreschkoff, Verteilung und Berechnung der Nurstellen Reeller Polynome, Ved Deutscher Verlag
der Wissenschaftern, Berlin, 1963.

[7] A. Piotrowski, Linear Operators and the Distribution of Zeros of Entire Functions, Ph.D. Disserta-
tion, University of Hawai‘i, 2007. Full text available at
http://scholarspace.manoa.hawaii.edu/bitstream/handle/10125/25932/

PhD_2007_Piotrowski_r.pdf?sequence=1
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